Waters[™]

Nota applicativa

Exact Mass GC-MS Analysis of Amine Monomers Used in Combinatorial Library Production

Robert L. Johnson, Robert Wiethe, William Stuart, Peter Hancock, Anthony Newton

GlaxoSmithKline, Waters Corporation

Abstract

In this application note, monomer confirmation using the GCT orthogonal Time-of-Flight (TOF) MS detector combined with OpenLynx high throughput software is described. The GCT produces exact mass data for elemental composition calculation and strucural elucidation. OpenLynx provides a true 'walk up and use' interface with flexible data browsing and reporting.

Benefits

The combination of GCT and OpenLynx has been shown to be ideal for the high throughput screening of monomers for combinatorial library production.

Introduction

Monomers are the low molecular weight building blocks used in the construction of combinatorial libraries. Confirmation of the identity and purity of these compounds, prior to using them in synthesis, is important in order to ensure that a synthetic route to an identified 'active' can be recreated. In addition, the requirement for post-purification of the final product is significantly reduced if not eliminated.^{1,2,3} In many cases, however, the production of combinatorial libraries has sometimes proceeded with little regard to the purity of starting material. This has more to do with the complexity of analyzing large numbers of compounds than with a lack of desire from the synthetic chemist. While much time has been spent in developing LC-MS techniques and software to analyze the products of a combinatorial synthesis, little has been done to speed the process of analyzing small molecules not easily seen by LC-MS. GC-MS analysis in both electron impact (EI) and chemical ionization (CI) modes has long been used for the analysis of small, volatile compounds.

In this note, monomer confirmation using the GCT orthogonal Time-of-Flight (TOF) MS detector combined with OpenLynx high throughput software is described. The GCT produces exact mass data for elemental composition calculation and strucural elucidation.

OpenLynx provides a true 'walk up and use' interface with flexible data browsing and reporting.

Ninety-five (95) primary amines from the Monomers Store facility at GlaxoSmithKline RTP were analyzed by exact mass measurement using the GCT acquiring both EI and CI mass spectra.

Experimental

Experiments were performed using a Micromass GCT oa-TOF mass spectrometer operated in positive ion electron impact (EI+) and positive ion chemical ionisation (CI+) modes with a one second acquisition over a mass range of 35-500Da. The source temperature was set to 180 °C in EI+ and 100 °C in CI+. Ammonia reagent gas at a pressure of 2×10^{-4} mbar was used for the CI analysis.

GC analyses were performed using a HP6890 gas chromatograph split/splitless injector. A J & W Scientific DB5-MS, 15 m x 0.53 mm ID column with a 1 m x 0.1 mm ID fused silica restrictor at the GC transfer line was used in constant flow mode with 1 mL/min Helium flow. The GC temperature program was 150 °C (2 mins) to 250 °C (4 mins) at 50 °C /min. This gave a run time of 8 minutes and injection-to-injection time of 11 minutes.

Results and Discussion

The EI and CI mass spectra of the 95 amines revealed only eight that did not contain the desired compound (vial 74 was broken). The amount of the desired compound present determined from the CI Total Ion

Chromatogram (TIC), ranged from less than a few percent to 100%. This calculation was made using OpenLynx, comparing the peak area of the compound of interest to the total area under the chromatogram. The results shown in Figure 1 were extracted from the OpenLynx Browser file shown in Figure 2.

In addition to this purity estimate, the identity of the impurities can also be determined from the data as shown in the following examples.

Name	Well, Expected Formula	Target	Found	Estimated %	Name	Well, Expected Formula	Target	Found	Estimated %
BUTYLAMINE	1, C4H11N	74.0970	YES	70	3-METHYLBENZYLAMINE	49, C8H11N	122.0970	YES	77
SEC-BUTYLAMINE	2, C4H11N	74.0970	NO	0	2-METHYLBENZYLAMINE	50, C8H11N	122.0970	YES	70
ISOBUTYLAMINE	3, C4H11N	74.0970	NO	0	DL-ALPHA-METHYLBENZYLAMINE	51, C8H11N	122.0970	YES	66
2-METHOXYETHYLAMINE	4, C3H9NO	76.0762	YES	4	(R)-(+)-1-PHENYLETHYLAMINE	52. C8H11N	122.0970	YES	82
CYCLOPENTYLAMINE	5, C5H11N	86.0970	YES	63	L-(-)-ALPHA-METHYLBENZYLAMINE	53. C8H11N	122,0970	YES	84
N-AMYLAMINE	6, C5H13N	88.1126	YES	24	PHENETHYLAMINE	54. C8H11N	122.0970	YES	54
3-AMINOPENTANE	7, C5H13N	88.1126	YES	11	4-(2-AMINOETHYL)PYRIDINE	55. C7H10N2	123.0922	YES	50
2-METHYLBUTYLAMINE	8, C5H13N	88.1126	NO	0	3-(2-AMINOETHYL)PYRIDINE	56. C7H10N2	123.0922	YES	53
ISOAMYLAMINE	9, C5H13N	88.1126	YES	100	2-(2-AMINOETHYL)PYBIDINE	57 C7H10N2	123 0922	YES	66
NEOPENTYLAMINE	10, C5H13N	88.1126	NO	0	4-ELUOBOBENZYLAMINE	58 C7H8EN	126 0719	YES	31
1,2-DIMETHYLPROPYLAMINE	11, C5H13N	88.1126	YES	99	3-ELUOBOBENZYLAMINE	59 CZHREN	126 0719	YES	27
N.N-DIMETHYLETHYLENEDIAMINE	12, C4H12N2	89.1079	YES	39	2-ELUOROBENZYLAMINE	60 C7H8EN	126.0719	VES	15
1.2-DIAMINO-2-METHYLPROPANE	13. C4H12N2	89.1079	YES	19		61 C6H11N3	126 1031	VES	79
3-METHOXYPROPYLAMINE	14. C4H11NO	90.0919	YES	74	2/1-CYCLOHEXENVL)ETHYLAMINE	62 C8H15N	126 1283	VES	77
2-AMINO-1-METHOXYPROPANE	15. C4H11NO	90.0919	YES	15	THIOPHENE 2 ETHYLAMINE	63 C6H9NS	128.0594	YES	59
FURFURYLAMINE	16, C5H7NO	98.0606	NO	0	CVCLOOCTVI AMINE	64 C9H17N	120.0004	VES	36
2.2.2-TRIFLUOROETHYLAMINE	17. C2H4E3N	100.0374	NO	0	2 2 DIMETHYL CVCI OHEYYL AMINE	65 COLITA	120.1439	VEQ	07
CYCLOHEXYLAMINE	18. C6H13N	100.1126	YES	94		66 C9H17N	128.1439	VES	97
3-AMINO-1-PROPANOL VINYL ETHER	19. C5H11NO	102.0919	YES	77		67 C0H17N	100 1400	VEQ	05
TETRAHYDBOEUBEUBYLAMINE	20 C5H11NO	102 0919	YES	84		CO COLLICIO	120.1439	VEC	35
HEXYLAMINE	21 C6H15N	102 1283	YES	2	2-(2-AMINOETHTL) 1-METHTLPTHROLIDINE	68, C7H16N2	129.1392	TEO	
1 3 DIMETHYL BUTYLAMINE	22 C6H15N	102 1283	VES	69	2-(AMINOMETHYL)-I-ETHYL-PYRHOLIDINE	69, C7H16N2	129.1392	YES	54
2-AMINO-3 3 DIMETHYL BUTANE	23 C6H15N	102 1283	VES	55	1-PYRROLIDINEPHOPANAMINE	70, C7H16N2	129.1392	YES	88
N1 N1-DIMETHYL-1 2-PROPANEDIAMINE	24 C5H14N2	103 1235	VES	49	1-(2-AMINOETHYL)PIPERIDINE	71, C7H16N2	129.1392	YES	62
N N-DIMETHYL-13-PROPANEDIAMINE	24, 05H14N2	103 1235	VES	73	2-AMINOOCTANE	72, C8H19N	130.1596	YES	80
2 AMINO 1 METHOXYBI ITANE	26, C5H19NO	104 1075	VES	56	2-AMINO-6-METHYLHEPTANE	73, C8H19N	130.1596	YES	100
3-ETHOXYPROPYLAMINE	20, 05H13NO	104.1075	VES	74	N-(2-AMINOETHYL)MORPHOLINE	75, C6H14N2O	131.1184	YES	88
2-AMINOETHYL ISOPPOPYL ETHER	28 C5H13NO	104 1075	VES	90	N.N-DIMETHYLNEOPENTANEDIAMINE	76, C7H18N2	131.1548	YES	100
AMINOACETAL DEHYDE DIMETHYL ACETAL	29, C4H11NO2	106.0868	VES	70	3-DIETHYLAMINOPROPYLAMINE	77, C7H18N2	131.1548	YES	86
	20, C4H11NS	106.0690	NO	0	ETHYL 3-AMINOBUTYRATE	78. C6H13NO2	132.1025	NO	0
2-(ETHYLTHIO)ETHYLAMINE	31 C4H11NS	106.0690	VES	79	3-BUTOXYPROPYLAMINE	79, C/H1/NO	132.1388	YES	/4
BENZYI AMINE	32 C7H9N	108 0813	YES	78	4-AMINOBUTYRALDEHYDE DIMETHYL ACETAL	80, C6H15NO2	134.1181	YES	87
4-(AMINOMETHYL)PYRIDINE	33 C6H8N2	109.0766	YES	63	AMINOACETALDEHYDE DIETHYL ACETAL	81, C6H15NO2	134.1181	YES	74
3 (AMINOMETHYI) PYRIDINE	34 C6H8N2	109.0766	VES	76	1-AMINOINDANE	82, C9H11N	134.0970	YES	67
2-(AMINOMETHYL)PYRIDINE	35 C6H8N2	109.0766	VES	65	2-AMINOINDAN	83, C9H11N	134.0970	YES	93
S METHYL 2 ELIDANMETHANAMINE	26 CEH9NO	112 0762	VES	45	2-(P-TOLYL)ETHYLAMINE	84, C9H13N	136.1126	YES	24
EX0.2 AMINONOPROPRIANE	97 C7H19N	112.0702	VES	76	BETA-METHYLPHENETHYLAMINE	85, C9H13N	136.1126	YES	62
	38, C5H7NS	114.0977	VES	58	ALPHAETHYLBENZYLAMINE	86, C9H13N	136.1126	YES	65
CYCLOHERTYLAMINE	39 C7H15N	11/ 1200	VEG	92	3,4 DIMETHYLBENZYLAMINE	87, C9H13N	136.1126	YES	69
2 METHYL CVCL OHEVYLAMINE	40 C7H15N	114.1200	VES	64	3-PHENYLPROPYLAMINE	88, C9H13N	136.1126	YES	26
2-METHYLCVCLOHEXYLAMINE	40, 07H15N	114.1203	VES	81	3-METHOXYBENZYLAMINE	89, C8H11NO	138.0919	YES	69
	42 C7H15N	114 1999	VES	96	4-METHOXYBENZYLAMINE	90, C8H11NO	138.0919	YES	46
1-/2-AMINOETHYL)PYBBOLIDINE	43 C6H14N2	115 1295	YES	56	2-METHOXYBENZYLAMINE	91, C8H11NO	138.0919	YES	70
3 AMINOHEPTANE	44 C7H17N	116 1490	VES	71	2-PHENOXYETHYLAMINE	92, C8H11NO	138.0919	YES	18
	AE CONTON	117 1999	VEG	69	4-FLUOROPHENETHYLAMINE	93, C8H10FN	140.0876	YES	96
	45, 0001002	117.1092	VEO	60	3-FLUOROPHENETHYLAMINE	94, C8H10FN	140.0876	YES	58
	40, CONTONZ	110.1000	VEC	80	2-FLUOROPHENETHYLAMINE	95, C8H10FN	140.0876	YES	43
	47, CONTSINO	122 0070	VES	100	4-FLUORO-ALPHA-METHYLBENZYLAMINE	96, C8H10FN	140.0876	YES	31
4-WETTTLDENZTLAWINE	40, 00000	122.0970	TES	100					

Figure 1. Results of monomer screening.

Figure 2. Example of OpenLynx browser results.

Example 1

Cyclopentylamine, *m/z* 86.097, is present at 63% (Figure 3). Several impurities are present with a nominal mass of 102, but with different elemental compositions. Two of these impurities were identified as saturated oxidized impurities of amines (Figure 4). Impurities at 104 and 106 were also identified as saturated oxidized impurities (Figure 4).

Figure 3. Cyclopentylamine.

Figure 4. Impurities in cyclopentylamine.

Example 2

Three isomeric fluorobenzylamines were analyzed in vials (4-fluorobenzylamine), (3-fluorobenzylamine), (2fluorobenzylamine), and showed vastly different impurity profiles. The accurate mass data confirmed that the indicated GC peaks at 4.42 minutes retention time (Figure 5) were due to the desired compounds. The amount of desired compound was 31%, 27%, and 15% respectively. A combination of CI and EI spectra and accurate mass data were used to determine the structure of these impurities. The compounds were from three different vendors and contained one common impurity at approximately 7.5 minutes retention time shown in Figure 5. This compound was determined to be an isomer of the difluorobenzylimine shown in Figure 6. The electron impact spectrum showed only the molecular ion at m/z 231 and a fragment at m/z 109 due to the fluorobenzyl ion. Since these three compounds are from three different vendors, this impurity is probably due to degradation of the amine.

Figure 5. 4-, 3- and 2-fluorobenzylamine and common impurity.

Figure 6. Identification of common impurity.

The major impurity in 4-fluorobenzylamine was determined to be an amide as shown in Figure 7 (Cl spectrum) and Figure 8 (El spectrum). The two impurities present in 2- fluoro-benzylamine (Figure 9) are not related to the desired compound - Figure 10 shows the Cl spectra and the elemental composition results. From the exact mass measured fragments in the El spectra, the structures were determined to be as shown

in Figure 11.

Figure 7. 4-, 3-, and 2-fluorobenzylamine and common impurity.

Figure 8. Major impurity in 4-fluorobenzylamine (EI+ spectrum).

Figure 9. Impurities in 2-fluorobenzylamine.

Figure 10. Impurities in 2-fluorobenzylamine (CI+ spectra).

Figure 11. Structures of impurities in 2-fluorobenzylamine (from EI+ spectra).

Conclusion

Of the 95 compounds analyzed in this experiment, only eight were found not to contain the desired compound. The accuracy of masses measured for the compounds and impurities presented was calculated. (Figure 12). These masses were measured using a single lock mass in both EI and ammonia CI. The exact

mass data can also be used to calculate elemental composition, thus enabling the identification of impurities in the starting material. The use of purer starting materials can reduce the time necessary for purification and quantitation of final library members. Time can also be saved if it can be demonstrated that the impurities are not likely to lead to impurities in the final product. In the case of the benzylamines, for example, the amine present in all three samples would not present a problem if the primary amine was linked to a solid phase resin. The impurities would not react and could be rinsed from the resin after the coupling reaction had been performed. This type of analysis is easily automated using OpenLynx, a sophisticated batch-processing engine allowing chemists easy access to GCT. This streamlines the analysis of large batches of samples for screening and automatically verifies that a compound of the desired formula is present at each well location and that the purity of each targeted compound exceeds a user-defined threshold.

The combination of GCT and OpenLynx has been shown to be ideal for the high throughput screening of monomers for combinatorial library production.

Compound	Mass	Calc Mass	mDa	РРМ	DBE	Formula	
Cyclopentylamine	86.0962 86.0970		-0.8 -9.0		0.5	C5H12N	
Impurity 1	102.0917	102.0919	-0.2	-1.9	-1.9 0.5 C5H12NO		
Impurity 2	102.1047	102.1045	0.2	2.3	2.3 0.0 C6H14C		
Impurity 3	102.1273	102.1283	-1.0 -9.5		-0.5	C6H16N	
Impurity 4	106.0860	106.0868	-0.8 -7.6		-0.5	C4H12NO2	
Impurity 5	104.1074	104.1075	-0.1	-1.3	-0.5	C5H14NO	
2-,3-and 4- Fluorobenzylamine	126.0717	126.0719	-0.2	-1.6	3.5	C7H9NF	
Common Impurity	232.0935	232.0938	-0.3	-1.2	8.5	C14H12NF2	
4- Impurity	248.0878	248.0887	-0.9	-0.9 -3.6		C14H12NOF2	
2- Impurity 1	228.1496	228.1501	-0.5	-2.5	7.5	C14H18N3	
2- Impurity 2	228.1136	228.1137	-0.1	-0.4	8.5	C13H14N3O	
Mass Measurem	0.57	4.89					

Figure 12. GCT mass accuracy.

References

- 1. Van Hijfte, Luc; Marciniak, Gilbert; Froloff, Nicolas. *J. Chromatogr., B: Biomed. Sci. Appl.* (1999), 725(1), 3–15.
- 2. Volonterio, Alessandro; Bravo, Pierfrancesco; Zanda, Matteo. Tetrahedron Letters (2001), 42, 3141–3144.
- 3. Bookser, Brett C.; Zhu, Shirong. J.Comb. Chem., (2001), 3(2), 205–215.

Featured Products

OpenLynx Open Access <https://www.waters.com/10008851>

720000531, October 2002

© 2021 Waters Corporation. All Rights Reserved.