

Pseudoephedrine HCL and Triprolidine HCL

Waters Corporation

This is an Application Brief and does not contain a detailed Experimental section.

Abstract

This application brief highlights the analysis of Pseudoephedrine HCL and Triprolidine HCL using Symmetry Columns.

Introduction

The compounds analyzed in this study are:

- 1. Pseudoephedrine HCL
- 2. Triprolidine HCL

1. Pseudoephedrine HCL

$$CH_{3} = CH_{2} - N$$

$$C = CH_{2} - N$$

$$HC1 \cdot H_{2}C$$

2. Triprolidine HCL

Experimental

HPLC Method

Column: Symmetry C_8 , 3.9 x 150 mm, 5 μm

Guard column: Symmetry Guard Column 3.9 x 20 mm, 5 μ m

Part numbers: Column - WAT046970, Guard - WAT054250

Mobile phase A: 50 mM potassium phosphate, pH 3.0

Mobile phase B: Acetonitrile

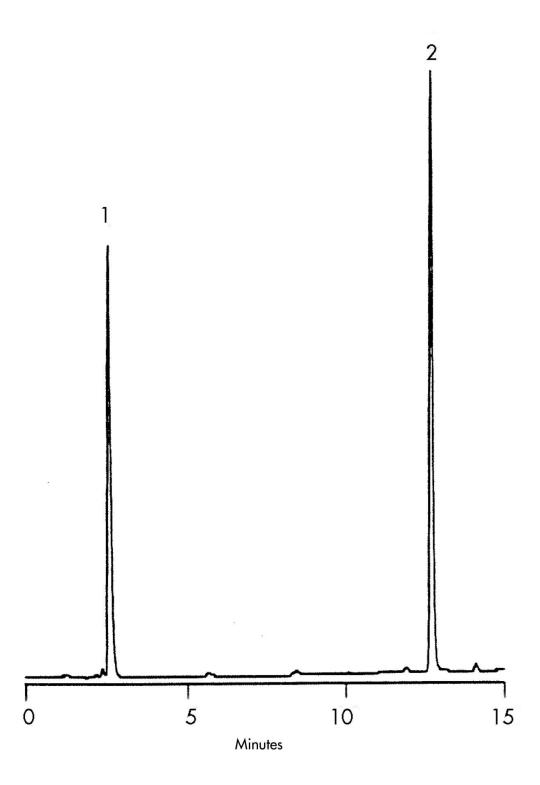
Flow rate: 1.0 mL/min

Injection volume: 5 μ L of 2.88 μ g/mL pseudoephedrine and 120 μ

g/mL triprolidine extracted tablet sample

Detection: UV @ 261 nm

Gradient Table


Time	Profile	
(min)	%A	%B
0	85	15
1	85	15
15	50	50

USP Tailing Factors

1. 1.53

2. 1.16

Results and Discussion

Featured Products

WA31763.138, June 2003	
\wedge	
© 2021 Waters Corporation. All Rights Reserved.	