Waters™

Nota de aplicación

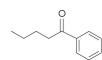
Phenones Analysis by Three Phases			
Waters Corporation			
This is an Application Brief and does not contain a detailed Experimental section.			
Abstract			
This application brief demonstrates analysis of phenones.			
Introduction			
The compounds used in this study are –			
1. Theophylline			
2. 2-Acetylfuran			
3. Acetanilide			
4. Acetophenone			
5. Propiophenone			
6. Butyrophenone			

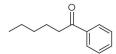
- 7. Benzophenone
- 8. Valerophenone
- 9. Hexanophenone
- 10. Heptanophenone
- 11. Octanophenone

Theophylline

2-Acetylfuran

Acetanilide


Acetophenone


Propiophenone

Butyrophenone

Benzophenone

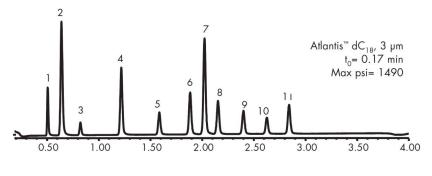
Valerophenone

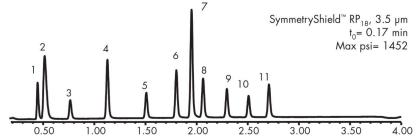
Hexanophenone

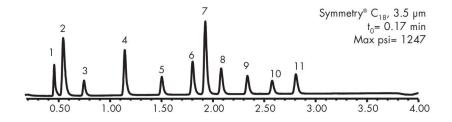
Heptanophenone

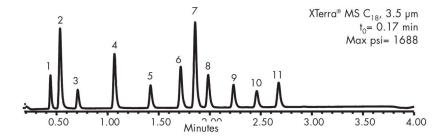
Octanophenone

Experimental


Conditions


Column:	Atlantis dC ₁₈ , 2.1 x 20 mm IS, 3 μm, (P/N: 186002058)
	Symmetry Shield RP ₁₈ , 2.1 x 20 mm IS,3.5 μ m, (P/N:186002068)
	Symmetry C_{18} , 2.1 x 20 mm IS, 3.5 μ m, (P/N: 186002066)
	Xterra MS C_{18} , 2.1 x 20 mm IS, 3.5 μ m,(P/N: 186001923)
Mobile phase A:	0.1% HCOOH in Water
Mobile phase B:	0.1% HCOOH in Acetonitrile
Flow Rate:	0.6 mL/min
Injection Volume:	5 μL
Sample concentration:	20 μg/mL
Temperature:	30 °C
Detection:	UV @ 254 nm
Instrument:	Alliance 2795 with 996 PDA


Gradient


Time	Profile		
(min)	%A	%B	
0.0	100	0	
4.0	0	100	

Results and Discussion

Featured Products

Alliance HPLC System https://www.waters.com/534293

WA31787.22, June 2003	
© 2022 Waters Corneration All Rights Reserved	
© 2022 Waters Corporation. All Rights Reserved.	