Waters™

Nota de aplicación

ACQUITY UPLC Analysis of Organic Acids

Waters Corporation

This is an Application Brief and does not contain a detailed Experimental section.

Abstract

This application brief demonstrates the UPLC analysis of organic acids.

Introduction

Structures

Experimental

UPLC Conditions

Column: ACQUITY BEH Amide, 2.1 x 100 mm, 1.7 µm

Part Number: 186004801

Mobile phase A: 50/50 MeCN/H₂O with 10 mM CH₃COONH₄, pH

9.0

Mobile phase B: 95/5 MeCN/H₂O with 10 mM CH₃COONH₄, pH

9.0

Gradient Flow Rate: 0.6 mL/min

Injection Volume: 5.0 µL

Column Temp: 50 °C

Sample Temp: 5 °C

Strong/Weak needle wash: $95/5 \text{ MeCN/H}_2\text{O}$

Seal wash: $10/90 \text{ MeOH/H}_2\text{O}$

Instrument: ACQUITY UPLC and TQD

Gradient:

Time	%A	%B
(min)		
Initial	0.1	99.9
0.4	0.1	99.9
0.5	40.0	60.0
2.0	70.0	30.0
2.01	0.1	99.9
5.0	0.1	99.9

MS Conditions

Instrument: ACQUITY TQD

Ionization Mode: ES-

Capillary Voltage: 4.0 kV

Cone Voltage: -25 V

Collision Energy: 10 eV

Extractor: 3 V

RF Lens: 0.1 V

Source Temp: 130 °C

Desolvation Temp: 350 °C

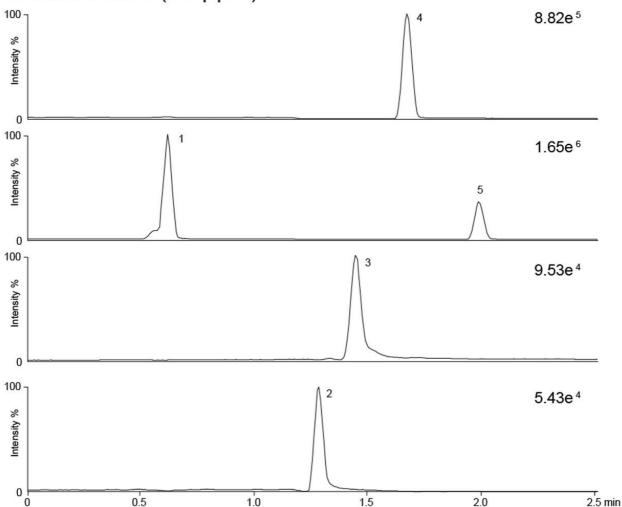
Desolvation Gas: 650 L/hr

Cone Gas: 0 L/hr

Collision Gas: 0.1 mL/min

MRM condition: Pyruvic acid: 86.92 > 42.9

Lactic acid: 88.92 > 42.9


Succinic acid: 116.93 > 72.9

Maleic and Fumaric acid: 114.88 > 70.9

Results and Discussion

COMPOUNDS

- 1. Maleic acid (1 ppm)
- 2. Pyruvic acid (50 ppm)
- 4. Succinic acid (50 ppm)
- 5. Fumaric acid (50 ppm)
- 3. Lactic acid (50 ppm)

Featured Products

ACQUITY UPLC System https://www.waters.com/514207

Xevo TQD Triple Quadrupole Mass Spectrometry https://www.waters.com/134608730

WA60096, June 2009

©2019 Waters Corporation. All Rights Reserved.