
Waters™

Application Note

Gradient Separation of Histidine Dipeptides on ACQUITY UPLC BEH HILIC

Waters Corporation

This is an Application Brief and does not contain a detailed Experimental section.

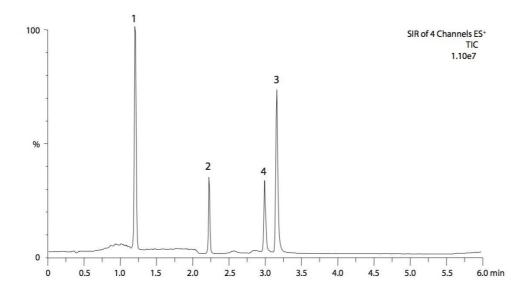
Abstract

This application brief demonstrates the gradient separation of histidine dipeptides on ACQUITY UPLC BEH HILIC Columns.

Introduction

The compounds used in this study are:

- 1. Creatinine
- 2. Creatine
- 3. Anserine
- 4. Carnosine


Experimental

Test Conditions

Column:		ACQUITY UPLC BEH HILIC, 2.1 x 50 mm, 1.7 μr
Part Number:		186003460
Mobile Phase A:		50/50 ACN/10 mM ammonium formate, w/ 0.125% HCOOH, pH 3.0
Mobile Phase B:		95/5 ACN/10 mM ammonium formate, w/ 0.125% HCOOH, pH 3.0
Flow Rate:		0.5 mL/min
Injection Volume:		5.0 µL
Sample Diluent:		75:25 ACN:MeOH
Sample Concentration:		Creatinine 1µg/mL; Carnosine 5 µg/mL; Anserine 5 µg/mL; Creatine 5 µg/mL
Column Temperature:		30 °C
Weak Needle Wash:		ACN/H ₂ O 95/5
Instrument:		Waters ACQUITY UPLC with ACQUITY SQD
Gradient		
Time (min)	Profile	
	%A	
0.00	0.1	

Time (min)	Profile	
5.00	99.9	
5.01	0.1	
6.00	0.1	
MS Conditions		
Ionization Mode:		ES+
Capillary:		2.5 kV
Cone:		20 V (Carnosine; Creatinine, Anserine);
		25 V (Creatine)
Source Temperature:		120 °C
Desolvation Temperature:		400 °C
Desolvation Gas Flow:		800 L/Hr
Cone gas Flow:		5 L/Hr
SIR m/z:		227.1 m/z (Carnosine); 132.1 m/z (Creatine);
		114.05 <i>m/z</i> (Creatinine); 241.1 <i>m/z</i> (Anserine)
Dwell Time:		0.1 s

Results and Discussion

Featured Products

ACQUITY UPLC System https://www.waters.com/514207

WA60139, August 2009

© 2021 Waters Corporation. All Rights Reserved.