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Abstract

This application note presents the application of label-mediated targeted mass spectrometry to quantify a

range of kinases from yeast, spanning a five-order dynamic range.

Benefits

Nanoscale separations are combined with quantitative MRM mass spectrometry to accurately determine
absolute yeast protein amounts over a wide dynamic range using isotopically labelled standards. More
peptides and proteins are more easily quantified and data analysis is more straightforward using elevated

analyzer resolution settings and a high sensitivity triple quadrupole mass spectrometer.

Introduction

Absolute protein quantification by LC-MS/MS is an important tool in assay development and creating data
for systems modeling. Enabling predictive biology is one of the primary goals of many system biology
studies, achieving detailed knowledge of the cellular constituents, their quantities, dynamics, and
interactions. This information can be subsequently embedded in mathematical models that permit
simulation of cellular state changes, testable by experiment, and leading to biological process definitions.!
However, this requires accurate baseline values for the cellular quantities of proteins. The large dynamic

range of a proteome is the most challenging barrier to LC-MS/MS-based protein quantification.

This application note presents the application of label-mediated targeted mass spectrometry to quantify a
range of kinases from yeast, spanning a five-order dynamic range. QconCAT? technology was used to create
isotopically-labeled internal standard peptides for 138 target proteins and quantification was performed by
time-scheduled MRM tandem quadrupole mass spectrometry, investigating the sensitivity of different

platforms, assay specificity, and quantitation dynamic range.

Experimental

Sample preparation

Several yeast kinase QconCATs were designed to contain two isotopically labelled peptides for each of the

targeted proteins and tryptically codigested with a native yeast strain as shown in Figures 1 and 2,



respectively. Figure 1 illustrates the QconCAT principle whereby a synthetic gene is designed to encode
proteotypic peptides of the sample protein mixture. Summarized in Figure 2 are the design of a
gquantitation concatamer and the high-throughput MRM quantitation workflow. Yeast kinases, as shown in

Figure 3, span the complete yeast abundance distribution range in terms of number of copies/cell.
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Figure 1. The principle of QconCAT technology.
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Figure 2. Design of a quantitation concatamer (QconCAT) and high-throughput MRM quantitation workflow.
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= Equivalent mammalian range would be to 1000 to 35,000,000 CPC

= Deciding factor in quantification success is peptide choice

= Still unpredictable parameters

= If predicting quantotypic peptides, use multiple peptides to infer protein abundance (at least N=3)

= Many ways for a peptide to produce incorrect protein quantification

= Xevo TQ-S shows a significant increase in performance over Xevo TQ

= More and better quantifications, more straightforward data analysis
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