Waters™

应用纪要

使用Arc HPLC成功实现进样器的低水平苯 甲醇残留

Bheeshmacharyulu. S, B. Tirupateswara Rao, Dilshad Pullancheri, Padmakar Wagh

Waters Corporation

这是一份应用简报,不包含详细的实验部分。

摘要

已知苯甲醇在HPLC系统中会造成进样器残留,可能导致结果不合格,最终导致批内失败。本实验在Waters Arc HPLC系统和类似的竞争厂商HPLC系统上使用相同的HPLC方法。与竞争厂商的系统相比,利用Arc HPLC系统观察到的残留百分比明显更低。实验证实,Arc HPLC系统可大幅改善进样器的苯甲醇残留问题。

优势

■ 采用流通针式(FTN)设计的Arc HPLC系统可成功减少分析物残留

简介

"残留"是描述一种样品污染的术语,这种污染会导致后续运行分析时,即使进样溶液中不包含样品(例如空白样),但仍然再次出现样品峰。影响进样器残留的因素有很多,包括分析物化学性质、色谱柱填料和HPLC系统进样器设计。

Arc HPLC系统是一款新型高效液相色谱(HPLC)系统,适用于制药、食品、学术研究及其他各种市场的常规检测。如果实验室希望HPLC系统既稳定可靠又兼具现代化技术的优势,Arc无疑是理想之选。该系统可以运行既有的HPLC方法,不受限于开发方法时使用的液相色谱品牌,同时又能完美重现这些方法的色谱保留时间。它的分析物残留水平非常低,进样精密度极佳,在5.0 mL/min流速下可耐受高达9500 psi的背压。

图1.Arc HPLC系统

本研究开展的实验有助于大幅改善苯甲醇残留问题。苯甲醇在阿托品注射液中用作防腐剂,其含量通常高于硫酸阿托品(为20倍)。单次进样就会在色谱柱上注入浓度非常高的苯甲醇,为分析带来了巨大挑战。

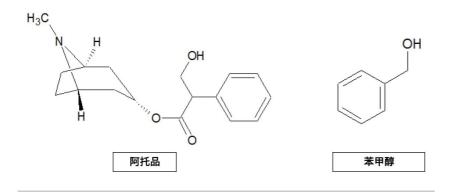


图2.阿托品和苯甲醇的结构

实验

实验设计

系统:	配备PDA检测器的Arc HPLC系统
色谱柱:	Inertsil ODS-3 3 μm

检测波长: 254、210 nm

样品浓度: 1800 ppm苯甲醇

进样体积: 50 μL

清除溶剂: 水:乙腈(9:1)

洗针液: 水:乙腈(1:1)

运行时间: 25 min

样品温度: 25°C

该实验旨在研究进样后空白溶液中进样器的苯甲醇残留。在Arc HPLC系统和类似的竞争厂商HPLC系统上使用相同的分析方法条件。样品序列中包含进样前空白溶液、样品(80 mg/mL硫酸阿托品和1800 μg/mL苯甲醇)以及进样后空白溶液。

结果与讨论

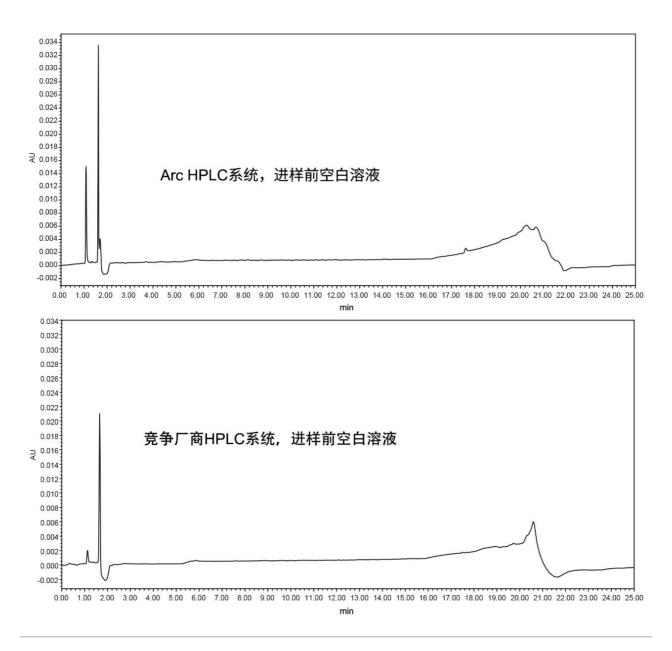


图3.利用Arc HPLC系统和竞争厂商HPLC系统分析进样前空白溶液得到的色谱图比较

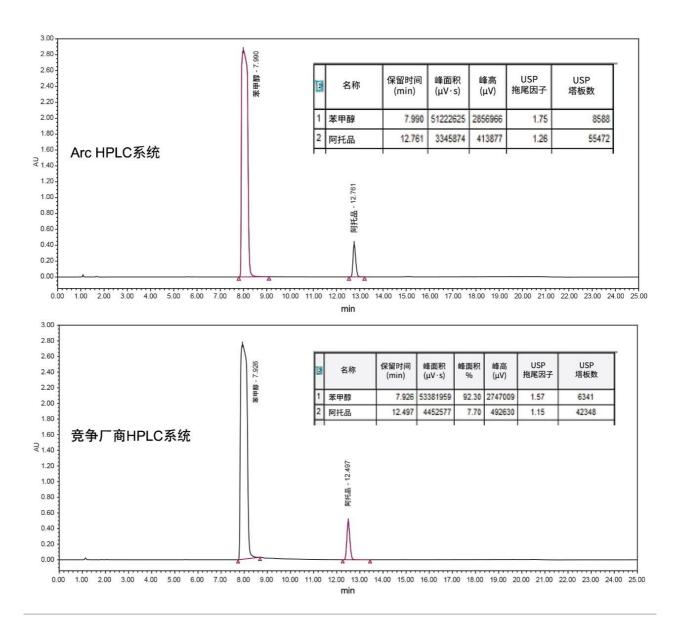


图4.利用Arc HPLC系统和竞争厂商HPLC系统分析相同的1800 ppm苯甲醇样品溶液(在该浓度下,苯甲醇峰饱和)得到的色谱图

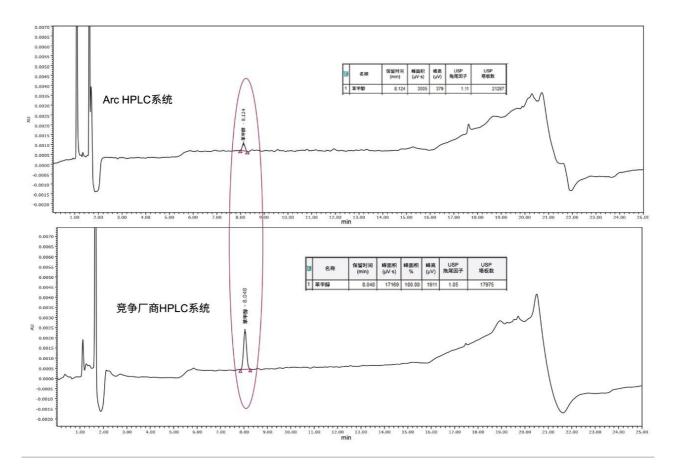


图5.利用Arc HPLC系统和竞争厂商HPLC系统分析进样后空白溶液得到的色谱图比较

参数	Arc HPLC	HPLC
进样前空白洗脱模式	未出峰	未出峰
样品溶液 (1800 ppm苯甲醇)		
a.保留时间	7.99	7.92
b.峰面积	51222825	53381959
c.USP拖尾因子	1.7	1.6
d.USP塔板数	8588	6341
e.精密度(%RSD)	0.1	0.2
进样后空白溶液(苯甲醇峰)		
a.保留时间	8.12	8.04
b.峰面积	3005	17169
c.残留%	0.006%	0.032%

表1.Arc HPLC系统和竞争厂商HPLC系统之间的结果比较

Arc HPLC系统采用先进的流通针式设计,会在运行过程中不断清洗进样针内部,有助于大幅减少进样器残留。用户还可自行配置更多清洗设置,从而能够应对"粘性"化合物,确保成功管控进样器残留问题。

结论

- 在阿托品注射液的苯甲醇分析中,Arc HPLC系统成功实现了极低的进样器残留
- 与竞争厂商HPLC系统相比,Arc HPLC系统的进样器残留百分比降低了5.3倍
- 实验证实,Arc HPLC系统有助于大幅改善进样器的苯甲醇残留问题

参考资料

Dlugasch, A., et al. Alliance Carryover Performance Part 1: Carryover Improvement Achieved
Through Instrument Design Changes for the Alliance HPLC System. Waters Application Note, 2018,
720006386EN. https://www.waters.com/webassets/cms/library/docs/720006386en.pdf

特色产品

Arc HPLC系统 https://www.waters.com/waters/nav.htm?cid=135068659

2998光电二极管阵列(PDA)检测器 < https://www.waters.com/1001362>

Empower色谱数据系统 https://www.waters.com/513188>

720007076ZH, 2020年11月

© 2021 Waters Corporation. All Rights Reserved.