Waters™

Note d'application

Seized Drug Screening using the ACQUITY RDa Detector

Michael Wakefield, Erik Todd

Waters Corporation

For forensic use only.

Abstract

This application note details the use of Waters' new ACQUITY RDa Detector for seized drug screening with a ten minute analysis time utilizing a dissolve, filter, dilute, and shoot sample preparation.

Introduction

Illicit drug use and trafficking continue to be a significant problem for law enforcement agencies worldwide. Seized drug screening is a crucial first step in identifying sample evidence in controlled substance laboratories. Traditionally, seized drug screening techniques include color test and TLC; while GC-MS analysis, among other techniques, is used for confirmation.

Spot color tests and TLC may flag common drugs of abuse that are previously characterized, but may not detect novel psychoactive substances. Seized drug screening utilizing an LC-Tof instrument provides a quick and efficient method to screen a customizable target list of drugs and facilitates identification of unidentified compounds.

Experimental

New Instrumentation

The new ACQUITY RDa Detector, coupled to an ACQUITY UPLC I-Class PLUS FTN System, was used to develop this assay. This is a compact, benchtop Tof mass spectrometer that has a mass resolution of >10,000 FWHM for routine accurate mass detection. The system can acquire both full scan data and full scan data with fragmentation (data independent acquisition). The seized drug screening experiment utilizes the full scan data with fragmentation acquisition mode, which provides confirmatory fragmentation data to facilitate compound identification. The waters_connect Software is an easy-to-use and customizable platform that utilizes accurate mass, retention time, and compound fragmentation data to quickly search a customizable

library of application specific compounds to identify case work samples. Figure 1 shows the schematic of the ACQUITY RDa Detector.

Figure 1. ACQUITY RDa Detector schematic.

Standards were acquired from Cerilliant (Round Rock, TX). Prescription drug samples were obtained from Safeway pharmacy (Livermore, CA). A baggie of presumed street drug(s) was discovered on the streets of Livermore, CA.

A custom target list of 100 compounds was created from an informal survey and was used for the screening experiment. The compounds are listed in Appendix A.

LC Conditions

LC system:	ACQUITY UPLC I-Class PLUS (FTN)
Column:	ACQUITY HSS T3 1.8 µm, 2.1 x 100 mm (P/N 186003539)
Column temp.:	45 °C
Sample temp.:	10 °C

Injection volume:	10 µL
Flow rate:	0.5 mL/min
Mobile phase A:	5 mM NH $_4$ formate pH 3.0
Mobile phase B:	ACN + 0.1% FA
Purge solvent:	50:50 MeOH:H ₂ O
Wash solvent:	25:25:25:25 MeOH:
	H ₂ O:IPA:ACN + 1% FA

UPLC Gradient Program

Time (min)	Flow (mL/min)	%MPA	%MPB	Curve
0.0	0.5	95	5	Initial
7.0	0.5	2	98	6
8.0	0.5	2	98	6
8.05	0.5	95	5	1
9.5	0.5	95	5	1

MS Conditions

MS system: ACQUITY RDa Detector Ionization mode: ESI positive Desolvation temp: 550 °C

Acquisition mode:	Full scan with fragmentation
Mass range:	Low (50-2000 <i>m/z</i>)
Scan rate:	10 Hz
Cone voltage:	20 V
Fragmentation cone voltage:	70–130 V
Capillary voltage:	0.8 kV
Intelligent data capture:	Off
Dynamic lockmass correction:	On
Acquisition time:	0-8 min

Data management

waters_connect v1.9.12

Sample Preparation

Pills are crushed to a powder and prepared as below:

- · Tip of spatula ~1 mg
- · Dissolve in 1 mL EtOH
- · Filter 1 mL with 0.2 µm Teflon filter (p/n 186009327)
- · Dilute filtered stock 100x in 20% MeOH
- \cdot Inject 10 μL and results <10 min

Liquids are diluted 100x in 20% MeOH and analyzed.

Results and Discussion

The typical workflow for seized drug screening on the ACQUITY RDa Detector would be as follows:

- 1. Document sample and prepare as shown above.
- 2. Place prepared labeled sample vial into autosampler and analyze.
- 3. Analyze solvent blank between samples to confirm/illustrate no sample cross contamination.

This allows more samples to be prepared and analyzed during a shift while maintaining evidence chain of custody.

As an example, Figure 2 shows a picture of a presumed drug baggie found on the street in California.

Figure 2. Baggie found on street.

Figure 3 illustrates the results obtained from the screening experiment of the baggie contents on the ACQUITY RDa Detector in a ten-minute analysis.

Figure 3. Seized drug screening results from baggie in Figure 2.

The screening experiment performed with the waters_connect Software suite allows one to create and utilize a custom 100-compound drug library which can be updated at any time.

The software deploys the power of accurate mass, retention time and full scan with fragmentation data collection to identify and display sample data in a user customizable format.

This sample screened presumptive positive for hydrocodone, lorazepam, and paracetamol. It can now be transferred to confirmatory testing (GC-MS or LC-MS) for positive identification.

Another advantage to screening seized drug samples with the ACQUITY RDa Detector is the ability to perform retrospective data analysis since a full data set is collected with a single injection. Figure 4 illustrates the analysis of a prescription pill with no drugs from the target list detected.

Waters UNIFI - Seized Drugs_HSST3	3_v2_110420: Analysis Center		
📑 🔡 👻 🚮 My Work	🕰 Explorer	🏯 Seized Drugs_HSST3_v2 🗙	Search folders 👂 📑
eview. Investigate Report			
Review Results -			🕐 Limit faults 🗏 Process 🎡 Edit 👻 🏘 Tools 👻 🔂 🌌 File 👻
orkflow 🔹 🖣	🖓 Tray: 1:A,7 🔹	Sample 5 No component	Y Filters 👻
Workflow	E	All and a second s	
mmary	Component sommary -		<mark>1</mark> * # G
Batch Overview	No data to display		
ized Drug Screen			
Drugs Found-No Frag			
Drugs Found >6<10ppm			
Drugs Found-Below Cutoff			
Suspect Screen		Cov.2	
Unidentified	Chromatograms •	国 🗞 🄕 🎟 🏐 - 🌩 🌘 🗐 🖉 spectra -	3 i 7 + 6 i
	No data to display.	No data to display.	
	Constant		

Figure 4. Prescription pill. No drugs detected on first pass screen with 100 compound drug target library.

We can use the Discovery tools built into the waters_connect Software to identify the unknown peak at RT of 2.19 min as shown in Figure 5.

Waters UNIFI - Seized Drugs_HSST3_v2_1104	120: Analysis Center						- 0	י נ
📑 🐨 🛃 My Work	S Explorer					Search folders	,	P 💷
eview Investigate Report								
🗇 — Home					Processing Options	🕼 Edit 👻 🏟 Tools	- 3	File 💌
ctions and Components	1:A,7	Sample 5	Candidate Mass 256	5 (<u>*</u>]			SZ Fill	iters 👻
Trav 1 60						100 A 100 A 100 A		
[Limits]	Chromatograms						- +1+	-
1 2 3 4 5 6 7 8	Channel name: 1: TOF MS	(50-2000) 20V ESI+ (TIC)						1
000000000	1	2.19						
00000000	1.1e7							
000000000								
00000000	1e7-							
00000000								
a a a a a a a a a a a a a	9+6							
niections 🤎 🗝	8+6-							
ame Type Acquisition status	-							
Sample 4 🔐 Complete	7e6-							
Blank 6 🔘 Complete								
Sample 5 😵 Complete	B beb							
Blank 7 O Complete	2							
QC 2 % Complete	Se6-							
Blank 8 O Complete								
	3e6							
Status Name Obse								
Candidate Mass 516.0189	2e6-							
Candidate Mass 511.0226								
Candidate Mass 256.0142	1e6 0.48					7.32	~	
	N			· · · · · · · · · · · · · · · ·				
	0 0.5	1 1.5 2	2.5 3 3.5 Retentiv	4 4.5 5	5.5 6 6.5	7	7.5	
	1D viewer	Spectra	neterior					
							-	
Administrator, waters_c [Administrate	11							00

Figure 5. Unknown peak at RT of 2.19 minutes.

The Discovery toolkit will take the accurate mass measured at 2.19 minutes, propose elemental formulae and

submit that information to the selected Chemspider libraries (550 to choose from) to search for possible candidates. The analyst can select a favorite subset of libraries to search, or search all of those available. In this case, nine possible database matches were found. The Discovery tool also performs an *in-silico* bond-breaking experiment to yield theoretical fragment ions for the database match candidates and compares that spectrum to the acquired fragment spectrum. The first candidate found is lamotrigine which matches the spectral composition of the "unknown" pill in sample 5 that was prepared and analyzed in Figure 6.

	🔚 🕶 🔠 👻 🚮 My Work	Explorer	🚊, Seized Drugs_HSST3_v2 ×		Search folders 🔎 📋
	eview Investigate Report				
$\frac{ }{ $	Home • Elucidation toolset			Processing Optio	ons 😨 Edit 💌 🏘 Tools 💌 👼 File 🤎
$\frac{1}{1} \frac{1}{1} \frac{1}$	ections and Components	41	7 🔹 💽 🎲 Sample S	Candidate Mass 256	
$\frac{1}{1000}$	S				
$\frac{1}{12} \frac{1}{2} 1$	Tray 1	Spectra		Ulscovery +	
$\frac{1}{2} \frac{2}{2} \frac{3}{4} \frac{5}{5} \frac{6}{6} \frac{7}{7} \frac{8}{6} \frac{1}{9} \frac{1}$	[Limite]	Item name: Sam	ple 5 Channel name: Low energy : TL	Parameters	Parameter preferences 👻
$\frac{1}{2} = \frac{1}{2} = \frac{1}$	1 2 3 4 5 6 7	7 8	1.36e7	Discovery Elemental Composition ChemSpider Fragment Match	
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $		1.2507-	256.01415	Available libraries: Selected libraries:	
$\frac{1}{10000000000000000000000000000000000$	BOOOOOO			Exposome Explorer Cayman Chemical	
$\frac{1}{2} \frac{1}{2} \frac{1}$	000000	167-	258.01137	Extrasynthese ChEMBL ChemSourceman	
$\frac{1}{10000000000000000000000000000000000$			1	FDA Structured Product Labeling index data DrugBank	
$\frac{1}{10000000000000000000000000000000000$	0000000	7.506-		FDA UNII - NLM 44 FDA	
$\frac{1}{10000000000000000000000000000000000$	10000000			Fecal Metabolome database	
$\frac{1}{10000} + \frac{1}{10000} + \frac{1}{100000} + \frac{1}{100000} + \frac{1}{1000000} + \frac{1}{10000000} + \frac{1}{10000000000000000000000000000000000$	F0000000				
$\frac{1}{10000000000000000000000000000000000$				Cancel X Cancel	
$\frac{1}{10000000000000000000000000000000000$		2505-	360 00062	Results (9 found)	
$\frac{1}{10000000000000000000000000000000000$			7000000	Component Name m/z Elemental Composition I-FiT Confidence (%) Co	ommon Name
$\frac{1}{1} \frac{1}{12} $	N		56.04943 171.14799 / / /	1 Candidate Mass 256.014151667335 256.0142 C9H7CI2N5 71.79 La	motrigine
$ \begin{array}{c} \hline \\ \hline $	Injections		0 100 200 300 400 500	2 Candidate Mass 256.014151667535 256.0142 C9H7Ci2N5 71.79 In	sogladine
Control North Control Nort	<u> </u>	Item name: Sam	ple 5 Channel name: High energy : Ti 🔅 🗵	3 Candidate Mass 256.01d151667335 256.01d2 C9H7Cl2N5 71.79 N	.(2,3.Dichlorophenyl).1,3,5.triazine.2,4.diamine
Market Operation Market Operation Market Status	Components (sample 5, Count: 3)	tem description	sample 5 m 8.55#6	4 Candidate Mass 256.014151667335 256.0142 C9H7CI2N5 71.79 6-	(2,4-Dichlorophenyi)-1,3,5-triazine-2,4-diamine
C cardinate Mars 1040109 2.19 C cardinate Mars 1040109 2.20 C cardinate Mars 1040109 2.20	Status Name Obse	ervedRT (min) 8e6-	256.01453	5 Candidate Mass 256 014151667335 256 0142 C9H7Cl2N5 71.79 5-	(3,4-Dicniorophenyl)-3-hydrazino-1,2,4-triazine
C Grandidate Mass 3110226 2.20 C Grandidate Mass 3110226 2.20 G G G G G G G G G G G G G G G G G G G	Candidate Mass 516.0189	2.19			
244 244 244 244 244 244 244 244	Candidate Mass 511.0226	2.20	258.01162	Assign	
1 Lanchogene 2 246 210,910,82 2 Lanchogene 2	Candidate Mass 256.0142	090		Information	1
2 4 2		(Court		Langer and the second	-te
1 Landburger N		2 400-			*
2 tamictal XR 2 tamictal XR 2 tamictal XR 2 tamictal XR 2 tamictal XR 4 tamictal XR 4 tamictal XR 4 tamictal XR 4 tamictal XR 5 tami		nten			3 256.015
246 - 2000E168 - 2000E				2 Lamietal	ta i
220929168 207,04108 4 Lamorginum 0 102,09930,01,01 0 100 200 300 400 500 1000 100 200 300 400 500 1000		2e0-	260.00846	3 Lamicle XR	2 1
0 100 200 300 400 500 3 Lenetrojna			210.98168 297,04108	4 Lamotriginum	292.041 mm m m
0 100 200 300 400 500 x 1000		0	122.99930	5 Lamotrigina	
Channed mass (m/s)		1	0 100 200 300 400 500		1000 2000 Mate [Da]
Image: Second			(m/z)	Then in the test	

Figure 6. Discovery tool showing "presumptive" identification of "unknown" pill.

This "presumptive" identification was performed with the data from a single injection of the sample and less than five minutes of additional analyst time. The next step would be to purchase the relevant certified reference material and analyze it under the same conditions, for unequivocal confirmation of this tentative data.

Conclusion

The Waters ACQUITY RDa Detector provides a quick and efficient method to perform a comprehensive screen on seized drug samples. The combination of accurate mass, short analysis time, a customizable, and expandable, library, and a full data set acquisition with fragmentation, provides a high confidence result for the drug screening experiment. The ability of the Tof analyzer to acquire a full data set facilitates

retrospective data analysis when a result is not obtained from the target library search. The integrated Discovery tool allows the user to interrogate unidentified peaks and quickly search hundreds of databases for presumptive identifications of the unknown compound.

Accurate mass screening with the ACQUITY RDa Detector provides a superior level of data and confidence in the screening results for seized drug case work that spot color tests and TLC cannot achieve. In addition, since a full data set is acquired with the first injection, retrospective data analysis can be performed if a compound is not identified from the target list library.

Appendix A	
Component name	
1-Benzylpiperazine (BZP)	Guaiphenesin
25B-NBOMe (2C-B-NBOMe)	Heroin
25C-NBOMe (2C-C-NBOMe)	Hydrocodone
25I-NBOMe (2C-I-NBOMe)	Hydromorphone
2C-H	Ketamine
2-Ethylamino-1-(3,4-Methylenedioxyphenyl)propan- 1-one (bkMDEA, ethylone)	LAMPA
2-Methylamino-1-(3,4-Methylenedioxyphenyl)butan- 1-one (bkMBDB, butylone)	Lidocaine
2-Methylamino-1-(3,4-Methylenedioxyphenyl) propan-1-one (bkMDMA, methylone)	Lisdexamphetamine
3,4-DMMC (3,4 Dimethylmethcathinone)	Lorazepam
4-ANPP/despropionylfentanyl	LSD
4-Ethylmethcathinone (p-EMC)	MDA
4-Methylethcathinone (4-MEC, NRG-2)	MDMA
AB-FUBINACA	Meperidine
AB-PINACA	Methadone
Acetylfentanyl	Methamphetamine
Acrylfentanyl	Methoxyacetylfentanyl
Alfentanil	Midazolam
Alpha-PVP (alpha Pyrrolidinopentiophenope)	Mitragynine
Alprazolam	Morphine
AM 2201	Morphine 6 Monoacotyl
Amphotomino	MT 45
	Nelevene
APINACA (AKD-40	N Ethylaentylene
Bufataning (5 HO DMT)	N-Ethylpentylone
Bullotenine (S-HO-DMT)	Necconine
Buterfentend	Overene
Butyrfentanyi	Oxazepam
Carteine	Oxycodone
Carbamazepine	Oxymorphone
	Papaverine
Carisoprodoi	
Chlorpheniramine	Pentylone (DKMBDP)
Clonazepam	Phenazepam
Clonazolam	Phencyclidine (PCP)
Cocaine	Phentermine
Codeine	Procaine
Cyclopropyl fentanyl	Pseudoephedrine
Dextromethorphan	Psilocin
Diazepam	Psilocybin
Dibutylone (bk-DMBDB)	Sildenafil
Diclazepam	Sufentanil
Dimethyltryptamine (DMT)	Tadalafil
Ephedrine	Temazepam
Estazolam	Thebaine
Etizolam	Tramadol
Fentanyl	U-47700
Flualprazolam	U-49900
Flubromazepam	Valerylfentanyl
Flubromazolam	W-15
Flurazepam	Xylazine
Gabapentin	Zolpidem

© 2021 Waters Corporation. All Rights Reserved.