Waters™

应用纪要

免疫亲和色谱净化法结合UPLC分析和荧光检测测定乳汁中的黄曲霉毒素M1

Justine Yu, Jianmin Liu, Nancy Zabe Collette, Simon Hird

Waters Corporation, VICAM

摘要

黄曲霉毒素是致癌真菌毒素,会对分别食用受污染食品和饲料的人及动物的健康带来不利影响。黄曲霉毒素M1 (AFM1)是黄曲霉毒素B1 (AFB1)的一种代谢物,动物摄入被AFB1污染的饲料后,在乳汁中发现了AFM1。我们开发出一种高灵敏度、高选择性的方法来测定乳汁中的AFM1。样品前处理包括乳汁离心以及分离和去除脂肪层。然后将脱脂样品上样至VICAM Afla M1免疫亲和色谱(IAC)柱,该色谱柱包含选择性结合AFM1的特异性抗体。AFM1与柱上抗体结合后,冲洗色谱柱以去除基质组分,此时AFM1将从色谱柱上洗脱。使用具有荧光检测功能的ACQUITY超高效液相色谱(UPLC)系统测定AFM1浓度。通过重复分析加标测试部分,评价了该方法的性能。方法检测限为0.005 μg/kg (ppb)。总体回收率令人满意(大于80%),且相对标准偏差低于10%。该方法具有良好的专属性,因为在空白样品中未观察到于扰峰。证明该方法适用于监测全球奶制品是否符合AFM1法规限值的要求。

优势

- 高性能 满足AOAC和欧盟委员会方法性能要求
- 稳健性 由现有AOAC官方方法修改而来
- 迅速 只需要2 mL乳汁,IAC净化速度快,UPLC运行时间短

简介

真菌毒素是有毒的真菌代谢物,会导致牲畜患病或生产效率降低,对人类健康有害并造成经济损失。在食品和动物饲料中,黄曲霉毒素是毒性和致癌性最强的一类常见真菌霉素。乳汁和乳制品可能含有黄曲霉毒素M1 (AFM1),这是黄曲霉毒素B1 (AFB1)的一种代谢物,而AFB1是一种强效人类致癌物。AFM1存在于产乳动物的乳汁中,此类动物摄入的饲料被AFB1污染,AFB1部分转化为这种羟基化代谢物,然后经乳汁排泄¹。出于多种原因,乳汁和乳制品中的AFM1被报道为全球关切的食品安全问题²。国际癌症研究机构(IARC)将AFM1归为2B类人类致癌物,AFM1和AFB1的急性毒性相似。AFM1具有热稳定性,正常的加工和储存无法有效降低它在乳汁和乳制品中的含量。如果消费者大量摄入乳品,少量该污染物就有可能引发健康风险,例如儿童,这是一个特别脆弱的消费者亚群。此外,乳汁和乳制品中存在AFM1带来的经济后果会对乳制品生产商造成严重影响。如果产品因不符合黄曲霉毒素标准而在国内或国际市场遭拒,就会产生直接的经济影响。有时,动物饲料中AFB1和乳汁样品中AFM1的含量相对较高,可能对当地消费者的健康构成危害。最近在孟加拉国和巴基斯坦的两次调查中,分别发现71%和48%的样品被AFM1污染^{2,3}。

许多国家/地区对食品(包括乳汁)中的黄曲霉毒素制定了严格规定,具体规定因国家/地区而异。例如,中国、印度、俄罗斯和美国等国家对液态乳品中的AFM1采用 $0.5~\mu g/L~(ppb)$ 的法典最大推荐限量,而欧盟更为严格,规定乳汁中的AFM1不得超过 $0.05~\mu g/k g~(ppb)^4$ 。乳汁不仅可作为液态奶直接饮用,还可用于制备婴儿配方奶粉、酸奶、奶酪、奶糖(包括巧克力)和糕点。

监测乳汁和乳制品中的AFM1浓度至关重要,即使在尚未制定食品和饲料污染物法规的国家/地区也是如此。现场检测一般采取基于单克隆抗体选择性的免疫化学试纸检测(如VICAM的Afla M1-V),但实验室检测更倾向于按照官方参考方法使用色谱技术,通常会在分析前进行免疫亲和色谱(IAC)柱净化。高效液相色谱与荧光检测器联用(HPLC-FLD)具有高灵敏度,广泛用于测定食品中的黄曲霉毒素。基于AFM1具有荧光特性,FLD的灵敏度和选择性均高于其他光学检测器,并且不需要通过柱后衍生化增强即可测定其他黄曲霉毒素。

本研究的目的是展示使用VICAM Afla-M1 LC IAC色谱柱和ACQUITY UPLC系统测定乳汁中AFM1的方法性能,该方法根据AOAC官方方法2000.08修改而来 5,6 。 许多国家/地区已在官方控制中采用该方法(例如印度方法No.FSSAI 07.014:2020) 7 。

实验

图1显示了黄曲霉毒素分析中的样品提取与净化细节概述。供试品的制备方法为:水浴加热液态奶,然后用磁力搅拌器轻轻搅拌以分散脂肪层,随后离心。丢弃上层脂肪,过滤脱脂奶以备进一步分析。原始AOAC官方方法规定供试品为50 mL脱脂奶,但新方法使用更灵敏的检测器和UPLC仪器,需要的样品量更少,可缩短净化步骤所需的时间。将脱脂奶样品上样到Afla-M1 LC IAC柱上。AFM1与柱上抗体结合。然后用水和甲醇的混合溶液清洗色谱柱以去除色谱柱上的共提取物,再用甲醇洗脱AFM1。随后使用UPLC联合FLD测定提取物中的AFMI。有关Afla-M1 LC IAC柱使用的更多详细信息见此处 < https://www.vicam.com/products/afla-m1-lc>。

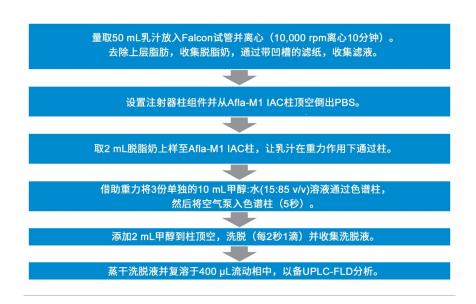


图1.乳汁中AFM1样品前处理和净化的详细信息概述。

使用购自Supelco的10 μ g/mL AFM1乙腈溶液(部件号CRM46319)制备校准标准品和加标乳汁样品。使用流动相稀释,制备浓度范围为0.005~2.0 μ g/mL的校准标准品。

液相色谱条件

检测条件:

液相色谱系统: 配备FTN样品管理器的ACQUITY UPLC H-Class PLUS

ACQUITY 荧光检测器,配备大体积流通池(部件号: 205000609); 激发波长360 nm;发射波长440

nm

样品瓶:	LCGC认证透明玻璃螺纹颈口样品瓶,12 × 32 mm,2 mL(部件号: 186000307C)	
色谱柱:	ACQUITY UPLC HSS T3 1.8 μm, 2.1 x 100 mm(部件号: 186009468)	
柱温:	25 °C	
样品温度:	25 °C	
进样体积:	10 μL	
流速:	0.4 mL/min	
流动相A:	7k(68%, v/v)	
流动相B:	乙腈(24%, v/v)	
流动相C:	甲醇(8%, v/v)	
运行时间:	3.5 min	
数据管理		
色谱软件:	Empower 3	

方法验证

通过重复分析加标乳汁样品(之前被视为空白样)验证方法性能。评估以下参数:灵敏度、选择性、线性、正确度和实验室内重现性(RSD $_r$)。通过分析三种浓度的十个重复样确定正确度和重现性;三种浓度分别为预期LOQ (0.005 μ g/kg)、欧盟限值(0.05 μ g/kg)和包括美国在内的许多其他国家/地区采用的法典限值(0.5 μ g/kg)。

结果与讨论

使用等度条件的HPLC-FLD多年来一直用于AFM1检测。由于亚2 μm颗粒和UPLC系统提高了色谱效率,而且 Waters ACQUITY荧光检测器中使用了大体积流通池,因此该方法的定量限非常低。使用等度条件得到的典型 UPLC色谱图如图2所示。该色谱方法在3.5分钟内为AFM1提供了出色的保留性和峰形。

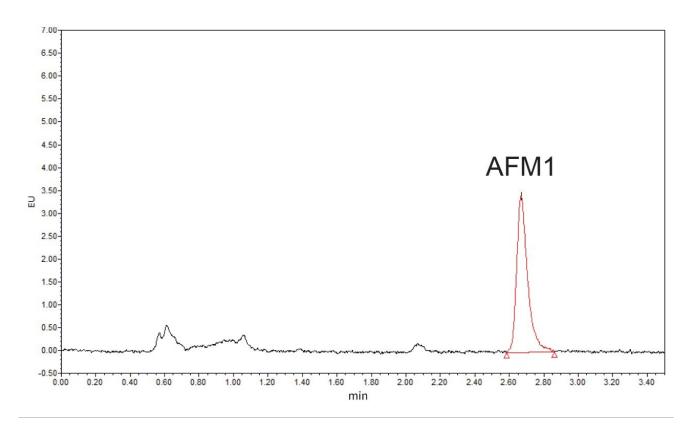


图2.分析0.025 ng/mL AFM1标准品的UPLC色谱图

从下方色谱图中峰的信噪比(S/N)可知(图3),该方法的灵敏度出色,适用于检查污染物是否符合全球法规最大限值。据估计,该方法的检测限为 $0.005~\mu g/kg$ 或更低。在空白样品中未检测到可能导致误报不合规样品的信号。例如,可以比较图3中的乳汁分析色谱图。

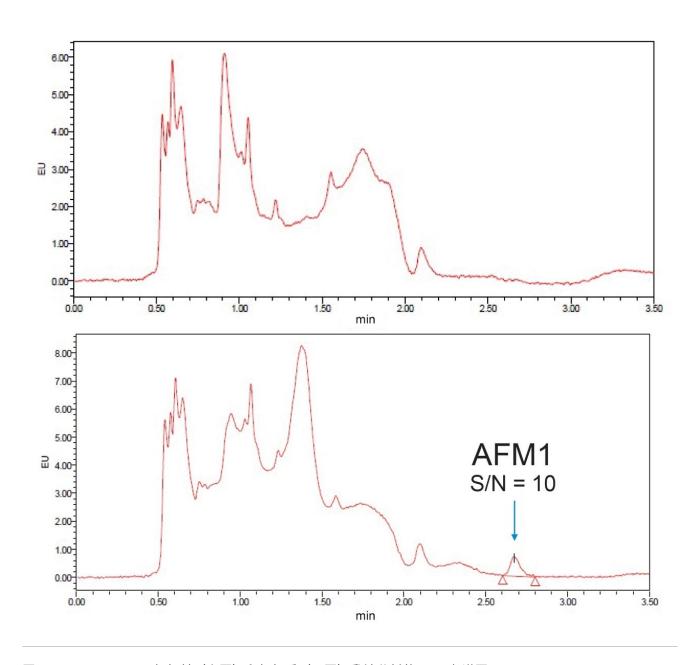


图3.0.005 μg/kg AFM1加标前(上图)和加标后(下图)乳汁分析的UPLC色谱图

使用流动相制备浓度范围为0.005~2.0~ng/mL的4点校准曲线,用于定量AFM1。通过线性拟合得到曲线的决定系数 (r^2) 值为0.9995,表明AFM1的定量结果可靠。

正确度用回收率百分比表示,在80%~114%的范围内;重现性(RSD_r)良好,RSD值为9.1%、9.3%和2.4%(见表 1)。这些值符合欧盟委员会⁸和 $AOAC^9$ 规定的要求。

		AFM1浓度(µg/kg)	
加标水平(µg/kg)	0.005	0.050	0.50
	0.0039	0.045	0.45
	0.0045	0.046	0.46
	0.0048	0.055	0.43
	0.0041	0.056	0.45
	0.0051	0.047	0.45
	0.0042	0.046	0.46
	0.0041	0.048	0.44
	0.0048	0.048	0.44
	0.0047	0.047	0.43
	0.0047	0.057	0.45
平均回收率(%)	90	100	90
重现性(%RSD _r)	9.1	9.3	2.4

表1.加标实验的样品值以及每个加标浓度下的回收率和重现性总结

结论

研究表明,Afla M1 IAC净化柱可以及时去除乳汁中的潜在干扰,发挥出色的分析物回收率和精密度。ACQUITY UPLC H-Class PLUS选项提供了缩短分析运行时间的可能,通过在荧光检测器中使用大体积流通池可改善灵敏度。该方法可应用于全球各地,具有检查乳汁是否符合AFM1法规限值所需的灵敏度、选择性和整体性能。

参考资料

- 1. Koser P et al. The Genetics of Aflatoxin B1 Metabolism. J Biol. Chem. 1988 263: 12584-12595.
- 2. Sumon A *et al.*The Presence of Aflatoxin M1 in Milk and Milk Products in Bangladesh. *Toxins* 2021, 13 :440.
- 3. Waqas N et al. Assessment of Aflatoxin B1 in Animal Feed and Aflatoxin M1 in Raw Milk Samples of

Different Species of Milking Animals From Punjab, Pakistan. J Food Safety 2021 41(3):e12893.

- 4. Turna N and Wu F. Aflatoxin M1 in Milk: A Global Occurrence, Intake, and Exposure Assessment. *Trends in Food Science & Technology* 2021 110:183–192.
- 5. Dragacci S *et al.*Immunoaffinity Column Cleanup With Liquid Chromatography for Determination of AflatoxinM1 in Liquid Milk: Collaborative Study. *J AOAC Int* 2001 84(2):437–443.
- 6. AOAC Official Method 2000.08-2004. Aflatoxin M1 in Liquid Milk. Immunoaffinity Column by Liquid Chromatography; AOAC International: Rockville, MD, USA, 2004, pp.1–3.
- 7. FSSAI.Manual of Methods of Analysis of Foods–Mycotoxins.2020. https://fssai.gov.in/upload/advisories/2020/12/5fca3db8df192Order_Revised_Manual_Mycotoxins_04_12_2020.pd
- 8. European Union.Commission Regulation (EC) No 401/2006 of 23 February 2006 Laying Down the Methods of Sampling and Analysis for the Official Control of the Levels of Mycotoxins in Foodstuffs. *Off.J. Eur.Union* 2006, L 70:12–34.
- 9. AOAC. Official Methods of Analysis. Appendix F Guidelines for Standard Method Performance Requirements, 2016.

特色产品

<ht

tps://www.vicam.com/products/afla-

m1-

ACOUITY UPLC H-Class PLUS系统 https://www.waters.com/10138533

ACQUITY UPLC FLR检测器 https://www.waters.com/514222

Empower色谱数据系统 < https://www.waters.com/10190669>

720007431ZH, 2021年11月

© 2022 Waters Corporation. All Rights Reserved.					