Waters[™]

アプリケーションノート

イオン対液体クロマトグラフィーと質量分析を 用いた合成 mRNA のオリゴマッピング

Maissa M. Gaye, Jonathan Fox, Johannes P.C. Vissers, Ian Reah, Chris Knowles, Matthew A. Lauber

Waters Corporation

要約

メッセンジャー RNA は、これを用いた癌治療に対する評価および COVID-19 に対する mRNA ワクチンの FDA 承認に示 されているように、ヒトの医療にとって急速に重要な治療法になっています。mRNA ワクチンやその他のクラスの mRNA 医薬品の急速な開発は、分析手法の進歩によって支えられています。このような方法の重要な側面の1つは、液 体クロマトグラフィー質量分析(LC-MS)による配列のマッピングにより、治療用 mRNA のアイデンティティー、純 度、修飾を確認することです。RNA の質量分析に基づく配列確認は、フラグメントの直接分子検出が提供されるため、 テンプレート化による RNA 配列確認より優れており、これを使用して、ヌクレオチド不純物の位置を特定し、重要な 構造特性(5'キャップおよびポリ A テール)を識別することができます。そのため、精密質量マッチから得られる mRNA 成分の注釈付きクロマトグラムをもたらす、mRNA の包括的なボトムアップ LC-UV-MS 特性解析のワークフロ ーを、当社は提案します。

アプリケーションのメリット

- ACQUITY[™] Premier BEH[™] C₁₈ 300 Å カラムと組み合わせたイオン対逆相クロマトグラフィーを使用することによる 、高いクロマトグラフィー分離能および MS 感度
- in silico mRNA 消化の計算および waters_connect/UNIFI™ サイエンスライブラリーの適用によって促進される精密 質量マッチングに基づく、mRNA 消化物の自動注釈

はじめに

SARS-CoV-2 パンデミックは、核酸ベースの医薬品、特に合成 mRNA の急速な開発に刺激を与えました¹。 1961 年に Brenner らによって発見されてから 40 年になります² [i]。mRNA は、癌治療のためのヒトでの臨床試験の開始^{1–3}およ び米国食品医薬品局による2種類のCOVID-19mRNAワクチンの完全承認(それぞれ2021年8月および2022年1月)によって示されているように、大きな可能性がある重要な治療法に進化しています。mRNA ワクチンやその他のクラ スの mRNA 医薬品の急速な開発は、分析手法の進歩によって支えられています。このような方法の重要な側面の1つ は、質量分析と結合した液体クロマトグラフィー(LC-MS)によるオリゴマッピングおよび配列確認により、治療用 mRNA のアイデンティティー、純度、修飾を確認することです。サンガーシーケンスや次世代シーケンス(NGS)など の核酸配列確認テクノロジーは、医薬品開発者に貴重な情報を提供します。ただし、タンデム MS(LC-MS/MS)⁴や MS^E(低コリジョンエネルギーと高コリジョンエネルギーを交互に使用)⁵ ベースのフラグメンテーションと組み合わ せて LC を使用することによって達成できる、レベルを上げた分析もあります。プロテオミクスのボトムアップアプロ ーチと同様に、LC-MS/MS や MS^E ベースの配列決定では、ヌクレオチド不純物の検出と位置確認、および脂質付加核 酸塩基⁶、末端キャッピングした残基、ポリ A テール修飾のような重要な構造特性など、RNA フラグメントを直接分子 検出する利点があります^{4,7}。大量のデータ解析ソリューションが存在するボトムアッププロテオミクスワークフローと は異なり、RNA マッピングの選択肢は限られています。LC、UV 検出、MS 測定で構成される単一プラットホーム内で 、所定の合成 mRNA を特性解析するボトムアップアプローチに基づく、オリゴマッピングのワークフローを、当社は 提案します。消化物成分を、社内で開発した自由に使用できる in silico 消化ライブラリーカリキュレーター(mRNAcalcondemand)と waters_connect™ を組み合わせて解析し、注釈付きクロマトグラムを生成しました。ここ では、RNase T1 消化ルシフェラーゼ mRNA を使用して、mRNA 配列マッピングの分析アプローチを実証します。

実験方法

サンプル情報

Bijoyita Roy(New England Biologabs、マサチューセッツ州 Ipswich)からご提供いただいた Cypridina ルシフェラ ーゼ mRNA(キャップなし、ポリ A テール修飾なし)約 90 µg を、3'-グアノシンの特定の RNaseT1(Worthington Biochemical Corporation、ニュージャージー州 Lakewood)を使用して消化しました。このワークフローを、10 µg の TriLink Biotechnologies(CleanCap[®]FLuc mRNA、カルフォルニア州 San Diego)のホタルルシフェラーゼ mRNA(未翻訳の配列は特許取得済み)を使用して繰り返したところ、同等の結果が得られました。ルシフェラーゼ mRNA は、消化の前に、ヌクレアーゼフリーバッファー(10 mM トリス、0.1 mM EDTA 水溶液(pH 7.5)、 Integrated DNA Technologies, Inc、アイオワ州 Coralville)中に調製した 20 µL 尿素(8 M)を用いて、80 °C で 5 分 間変性しました。次に、ヌクレアーゼフリーバッファーに再懸濁した 24 µg(約 10 kU)の RNase T1(Worthington Biochemical Corporation、ニュージャージー州 Lakewood)を、変性 mRNA に室温で添加し、この混合液を 37 ℃ で 30 分間培養しました。培養終了時に、ヌクレアーゼフリーバッファー(40 µL)を添加してサンプル合計量を 80 µL にしました。最終アリコートは、ポリプロピレン製 300 µL オートサンプラーバイアル(製品番号: 186002639 < https://www.waters.com/nextgen/global/shop/vials-containers--collection-plates/186002639-polypropylene-12-x-32-mm-screw-neck-vial-with-cap-and-preslit-pt.html>)に移しました。得られた消化物は、それ以上の操作 を行わずにイオン対逆相クロマトグラフィー(IP-RPLC)で処理し、その後 BioAccord[™] RDa[™] 検出器を使用してネガ ティブイオン化モードで MS 検出しました。

LC 条件

LC システム:	ACQUITY UPLC [™] Premier BSM システム(BioAccord システムの一部として)
検出器:	ACQUITY UPLC TUV 検出器
波長:	260 nm
カラム:	ACQUITY Premier Peptide BEH C ₁₈ 、2.1 × 150 mm、300 Å、1.7 μm(製品番号:186009495)
カラム温度:	70 °C
サンプル温度:	4 °C
注入:	5 μL
流速:	0.4 mL/分
移動相A	0.1% N,N-ジイソプロピルエチルアミン(DIPEA)を IP 試薬とし、1% 1,1,1,3,3,3-ヘキサフルオロイソプロ パノール(HFIP)を脱イオン水中に調製
移動相B	0.0375% DIPEA、0.075% HFIP 含有 65:35 アセトニ トリル:水

グラジエントテーブル

時間(分)	mL/分	A (%)	B (%)	曲線
初期条件	0.4	97	3	*
60	0.4	70	30	6
60.5	0.4	5	95	6
61	0.4	97	3	6
70	0.4	97	3	6

分析時間 = 70分

MS 条件

MS システム:	BioAccord LC-MS システム
検出器:	ACQUITY RDa 検出器
モード:	フラグメンテーションによるフルスキャン
極性:	ネガティブ
コーン電圧:	40 V
フラグメンテーションコーン電圧:	$80 \sim 200 \text{ V}$
質量範囲:	高(<i>m/z</i> 400~5,000)
スキャンレート:	2 Hz
キャピラリー電圧:	0.80 kV
脱溶媒温度:	400 °C

結果および考察

C₁₈ 固定相を用いるイオン対逆相クロマトグラフィー(IP-RPLC)は、オリゴヌクレオチドの分析での実証済みのアプ ローチになっています^{4.7}。移動相には、一般にはアルキルアミンなどのイオン対試薬が含まれます。アルキルアミン は C₁₈ 固定相^{8,9,10} に吸着され、これによって保持機構のようなミックスモードが導入されます⁸⁻¹⁰。このアプリケーシ ョンで使用する N,N-ジイソプロピルエチルアミン(DIPEA)/1,1,1,3,3,3-ヘキサフルオロイソプロパノール(HFIP)移 動相システムは、光学 UV 検出およびネガティブイオン化モード質量分析のいずれにも適合します^{4,7,-10}。HFIP は、エ レクトロスプレーイオン化を促進するために使用します⁸。

RNase T1 消化ルシフェラーゼ mRNA を、ACQUITY Premier Peptide BEH C₁₈(2.1 × 150 mm、300 Å、1.7 μ m)カ ラムに注入し、ACQUITY UPLC TUV 検出器を装着した ACQUITY Premier バイナリー LC を使用してグラジエントを開 発しました。本研究で使用した ACQUITY Premier Peptide BEH C₁₈ カラムは ACQUITY Premier Oligonucleotide BEH C₁₈ カラムに類似していますが、ポアサイズがより大きいものです。ポアサイズがより広範囲の 300 Å のオリゴで 試験済みのカラムが間もなくリリースされます。BioAccord 卓上 LC-MS システムの ACOUITY RDa 検出器で、ネガテ ィブイオン化モード質量分析を使用してデータを3回繰り返し取り込みました。さらに、後でLC ピーク同定の確認に 使用できる高エネルギーフラグメントイオンスペクトルがスキャン1回おきに生成されるように、ACQUITY RDa 検出 器による MS^E データ測定をプログラムしました。図 1 に、RNase T1 対照サンプル(上のトレース)、mRNA 対照サン プル(下のトレース)、消化済み mRNA(中央のトレース)のトータルイオンクロマトグラム(TIC)が、示されてい ます。RNase T1 によるルシフェラーゼ mRNA の消化で生じたオリゴヌクレオチドフラグメントは、4 シグマピークキ ャパシティ 613 で容易に分離されました。全体として、クロマトグラフィーピークはシャープかつ対称で、3 回繰り返 し注入にわたる保持時間(RT)のばらつきは約0.01分でした。グラジエント時間60分間のメソッドで、消化物の成 分は 2 ~ 23 分で溶出し、消化が不完全な一部の mRNA は 29 分付近、インタクト RNaseT1 は 54 分付近で溶出しまし た。図1の上のトレースに示されているように、RNase T1 対照サンプルでは、保持時間 50 分の後にのみシグナルが 見られました。これにより、RNase T1 によって mRNA 消化済み成分の保持時間ウィンドウ内に干渉が持ち込まれない ことが確認されました(図1、中央のトレース)。同様に、図1の下のトレースにより、インタクトルシフェラーゼ mRNA は約 38 分に溶出することが示されており、消化済みサンプルで 29 分に観察されたピーク(図 1、中央のトレー ス)は、消化が不完全な mRNA に対応することが確認されます。ここで、5'キャップ構造とポリ A テール構造で構成 される合成 mRNA の場合、29 分と 37 分付近のピークが消化後に観察されることがわかります。約 38 分から約 37 分 へのわずかなシフトは、消化されなかったポリA構造を示す可能性があります(このクロマトグラフィーの動作の検討 については、今後のアプリケーションノートで説明します)。

図 1: RNase T1 対照サンプル(上のトレース)、mRNA 対照サンプル(下のトレース)、および RNase T1 で消化し、

ACQUITY UPLC I-Class システム(ACQUITY Premier Peptide BEH C₁₈ カラム、2.1 x 150 mm、300Å、1.7 μm)および ネガティブイオン化モードの BioAccord ACQUITY RDa 検出器を使用して分析したルシフェラーゼ mRNA のイオン対逆 相クロマトグラフィー(IP-RPLC)で得られた消化物(中間トレース)の TIC クロマトグラム

in-silico 消化 mRNA カリキュレーター(mRNA calcondemand)のグラフィカルユーザーインタフェース(GUI)がス キーム1に示されています。塩基配列の隣に、修飾、酵素、欠落している開裂など、いくつかの消化パラメーターが指 定されています。カリキュレーターにより、この情報に基づいてチャージ状態や *m/z* 範囲などの MS 固有の設定、およ びモノアイソトピック質量または平均質量に基づいて計算を行う機能が、既定に設定されます。生成された出力は、フ ラットテキスト csv ファイル形式であり、UNIFI または waters_connect ソフトウェアで活用、または補完するダウン ストリーム分析に使用できます。

equence and Modifications		MS settings	
AUGGAGGACGCCAAGAACAUCAAGAAGGGCCCCCGCCCCUUCUACCCCCUGGAGGA GGCACCGCCGGCGAGCAGCUGCACAAGGGCCAUGAAGCGGUACGCCCUGGUGCCCGG ACCAUCGCCUUCACCGACGCCCACAUCGAGGUGGACAUCACCUACGCCGAGUACUUC GAGAUGAGCGUGCGGCGGCGGCGGCCAUGAAGCGGUACGGCCUGAACACCAACCA	*	Length Min Length 3 Length a-specific fragment Min Length 3	Max Length 200 Max Length 200
UGGACAGCAAGACGACUACCAGGGCUUCCAGAGCAUGUACACCUUCGUGACCAGCC ACCUGCCCCCGGCUUCAACGAGUACGACUUCGUGCCCGAGAGCUUCGACCGGGACA	// Clear	Charge	- Max Charge
Modifications/Fragments		1	14
0	~		
Modification		Polarity negative	
•	~		
		m/z range	
Enzyme RNase T1	~	Min m/z range	- Max m/z range
a-specific digestion OFF non-redundant OFF		Mass monoisotopic	
2	~		
Adducts			
•	~		
			Reset Calculate

次に、ライブラリーを作成し、ここでは消化物成分は個々の分析種と見なされます。これは、カリキュレーターの出力 をスプレッドシートとして UNIFI サイエンスライブラリーにインポートすることで達成されました。作成したライブラ リーを使用して、HRMS スクリーニング分析メソッドで、取り込み後の消化物化合物をターゲットとし、ユーザー指定 の許容範囲を用いることができます。質量許容範囲ベースのライブラリーマッチの使用が、以下に示されています。ラ イブラリー検索の結果、注釈付きクロマトグラムが自動的に生成されます(図 2)。保持時間ウィンドウ 17 ~ 20 分の 拡大表示に対応するクローズアップが、図 2 に示されています。

スキーム 1: in silico mRNA 消化物質量計算用の mRNA カリキュレーターの GUI

図 2: 精密質量に基づいて、ターゲット成分ライブラリーにマッチした後に生成された、ルシフェラーゼ mRNA 消化物 の注釈付き T/C クロマトグラム。ルシフェラーゼ mRNA を、RNase T1 で消化し、ACQUITY Premier BSM LC (ACQUITY Premier Peptide BEH C₁₈ カラム、2.1 × 150 mm、300 Å、1.7 µm) およびネガティブモードの BioAccord ACQUITY RDa 検出器を使用して、分析しました。ターゲット成分は mRNA 質量カリキュレーターを使用し て計算しました。

最大2つの開裂の欠落を許容して作成した in silico ライブラリーに対するデータスクリーニングの各技術的繰り返しか ら、計436、428、441 の消化成分の可能性のある同定(ID)が生成されました。手動バリデーションのために、いく つかの基準を検討しました。同定された成分441 のうち40 は、存在量およびピーク形状(低存在量のクロマトグラフ ィーピークのショルダーなど)に基づいて除外しました。これらの除外した ID の大部分(40 のうち27)は、24 ~ 60 分に位置していました。全体として、同定およびバリデーションした成分の約 60% が、質量誤差 10 ppm の範囲内で した(261 消化物成分)。RNase T1 対照サンプル(図 1、上のトレース)に同じクエリーを行いましたが、予想した とおり同定は得られませんでした。ピーク形状と存在量に加えて、同位体分布の信頼性の高い解明に基づいて、結果を さらにバリデーションし、電荷割り当てを推定して、139 の消化物成分(質量誤差 5 ppm 以内が65%)が得られまし た。最後に、一部の割り当てを分析に含めませんでした。その理由は、クロマトグラフィーピークの広がりやショルダ ーピークの繰り返し検出によってトリガーされる、余剰の割り当てと思われたためです。これにより、同定数がさらに 16 成分減少しました。ただし、2 つの例で、分析種の質量が複数の保持時間で現れ、2 つの明瞭な明確に定義されたク ロマトグラフィーピークに対応する一意の2つのIDが生成されました。異性体ID(化学組成は同じで配列が異なる分 子種)と同重体ID(化学組成が異なるが[精密質量が異なる]ノミナル質量が似ている分子種)が存在することにも気 付きました。最終的に、精密質量マッチに基づいて90の一意の成分を同定でき、これらは、異性体のヌクレオチド配 列および同重体イオン(表1でグレーで強調表示されているセル)を含めて、表1に報告されています。

成分名	(F##	実測保持時間	ニュートラル質量	観測された	0020	質量調差	細胞された追加のイオン
		(分)	(Da)	m/z		(ppm)	
UGUGp_1	C38H48N14O31P4	1.64	1320.15604	659.0689	-2	-4	-2H, -H
CCUUCGCCCGp	C92H120N32O73P10	1.65	3150.40375	1049.1302	-3	0.4	-3H
UCUACUGCGp	C84H107N30O66P9	1.7	2870.35772	1434.1633	-2	-6.3	-2H
CCGGUCAAAGp	C96H121N41069P10	1.93	3261.45959	1086.1526	-3	3.9	-3H
CCGn 6	C28H38N11O22D3	2.54	973,14057	485 567	-2	-9.2	-2H _H
GAGACACCCUAGe	C115H145N49O82P12	2.54	3895 55339	1297 5089	-2	-3.2	-3H
CUCGGp	C47H61N18O37P5	2.55	1624.21331	1623.2076	-1	1	-H
CUGp	C28H37N10O23P3	2.55	974.12459	973.1177	-1	0.4	-H, -2H
GAGACAUCAUUGp	C115H143N47O84P12	2.55	3897.52142	1298.1735	-3	3.5	-3H
UAUUGAUAGCAGp	C115H142N46O85P12	2.55	3898.50544	1948.2401	-2	-3.1	-2H
ACGp	C29H38N13O21P3	2.73	997.1518	996.1407	-1	-3.8	-H, -2H
CAGp	C29H38N13O21P3	2.73	997.1518	996.1407	-1	-3.8	-H, -2H
AUGp	C29H37N12O22P3	2.92	998.13582	997.1285	-1	0	-H, -2H
AAGp_4	C30H38N15O20P3	3.18	1021.16304	1020.153	-1	-2.7	-H, -2H
ACACCCUAGAAGp	C115H145N49O81P12	3.44	3879.55848	1292.17	-3	-8.8	-3H, -6H, -9H
UGAUCUUGp	C75H94N26O60P8	3.9	2566.30045	1282.1387	-2	-3.9	-2H
CCCGp	C37H50N14O29P4	3.91	1278.18186	638.0888	-2	6.9	-2H, -3H, -H
CCUGp	C37H49N13O30P4	3.91	12/9.1658/	638.5822	-2	9	-2H, -3H, -H
COCOGGOGP	C75H95N27O60P8	3.91	2581.31135	1289.6535	-2	3,4	-2H
AAGCCGUGp	C77H90N28059P8	4 17	2560.32733	1312 675	-2	-1.1	-2H
HAAGo 1	C20H40N17O28P4	4.0	122718824	1326 1802	-2	-0.7	-211
AAAGp	C40H50N20O26P4	5.06	1350 21556	1349 2049	-1	-2.5	-H,-2H -3H
CUCUGp	C46H60N15O38P5	5.81	1585.19118	791.5962	-2	9	-2H, -3H, -H
UCCCGp	C46H61N16O37P5	5.83	1584.20716	791.1011	-2	5.1	-2H, -3H, -H
CACCGp	C47H62N19O35P5	6.18	1607.23438	802.6146	-2	4.8	-2H, -3H, -H
AUCUGp	C47H60N17O37P5	6.51	1609.20241	803.6021	-2	9.2	-2H, -3H, -H
AUCCGp	C47H61N18O36P5	6.53	1608.21839	803.1076	-2	6.1	-2H, -3H, -H
AAAAACAUGUUGCCGp	C144H179N60O103P15	6.52	4860.66775	1619.2101	-3	-4.7	-3H
CAAAGp	C49H62N23O33P5	6.79	1655.25684	826.625	-2	3.7	-2H, -3H, -H
CCUCUGp	C55H72N18O45P6	7.89	1890.23246	944.1145	-2	5.1	-2H, -3H, -4H, -H
CUCCCGp	C55H73N19O44P6	7.91	1889.24845	943.6212	-2	3.7	-2H, -3H, -4H, -H
CCCCAGp	C56H74N22O42P6	8.29	1912.27566	955.1342	-2	3	-2H, -3H, -4H, -H
AUCCAGp	C57H73N23O42P6	8.58	1937.27091	967.6315	-2	2.6	-2H, -3H, -4H, -H
CAUUAGp	C57H72N22O43P6	8.58	1938.25493	1937.2514	-1	1.9	-н
AUUCUGp	C56H71N19O45P6	8.63	1915.22771	956.614	-2	6.9	-2H, -3H, -4H, -H
AAUCAGp	C58H73N25O41P6	8.88	1961.28215	979.6375	-2	3	-2H, -3H, -4H, -H
UACAAGp	C58H73N25O41P6	8.88	1961.28215	979.6375	-2	3	-2H, -3H, -4H, -H
AUCCAGp	C57H73N23O42P6	8.89	1937.27091	967.6353	-2	6.5	-2H, -3H, -H
ACACAGE	C59H73N25O42P6	9.03	1060 20912	967,634	-2	3.2	20, 20, 40, 0
ACAAAGp	C59H74N28O39P6	9,52	1984,30936	991,1508	-2	2.7	-2H, -3H, -4H, -H
UCUUCUGp	C64H82N19O54P7	9,89	2197.24178	1097.6182	-2	3.5	-2H, -3H, -4H
AUCUCUGp	C65H83N22O52P7	10.23	2220.269	1109.1359	-2	7.1	-2H, -3H, -4H
UCUACUGD	C65H83N22O52P7	10.23	2220,269	1109,1359	-2	7.1	-2H, -3H, -4H
UCUACUGp	C65H83N22O52P7	10.61	2220.269	1109.1302	-2	2	-2H, -3H, -4H
AUUCCAGp	C66H84N25O50P7	10.53	2243.29621	1120.643	-2	1.2	-2H, -3H, -4H
CAUACUGp	C66H84N25O50P7	10.53	2243.29621	1120.643	-2	1.2	-2H, -3H, -4H
CAUACUGp	C66H84N25O50P7	10.96	2243.29621	1120.6441	-2	2.2	-2H, -3H, -4H
AUUUCAGp	C66H83N24O51P7	10.95	2244.28023	1121.141	-2	6.6	-2H, -3H, -4H, -H
AAACCUGp	C67H85N28O48P7	11.22	2266.32343	1132.1603	-2	4.5	-2H, -3H, -4H, -H
ACUACAGp	C67H85N28O48P7	11.22	2266.32343	1132.1603	-2	4.5	-2H, -3H, -4H, -H
CCACAAGp	C67H86N29O47P7	11.25	2265.33942	1131.6655	-2	2	-2H, -3H, -4H
UCUCUUCGp	C73H94N22O61P8	11.69	2502.28307	1250.1365	-2	1.1	-2H, -3H, -4H, -5H
AAAACAGp	C69H86N33O45P7	11.84	2313.36188	1155.6762	-2	1.5	-2H, -3H, -4H
UCCUUACGp	C74H95N25O59P8	11.99	2525.31028	1261.6501	-2	1.2	-2H, -3H, -4H, -5H
CCACCAUGp	C75H97N29O56P8	12.32	2547.35349	1272.6742	-2	3.1	-2H, -3H, -4H
AAAUCCUGp	C76H96N30O56P8	12.63	2572.34873	1285.1683	-2	0.3	-2H, -3H, -4H, -5H
ACAUACUGp	C76H96N30O56P8	12.63	2572.34873	1285.1683	-2	0.3	-2H, -3H, -4H, -5H
ACAUACUGp	C76H96N30056P8	12.85	25/2.348/3	1285.1676	-2	-0.2	-2H, -3H, -4H
спессев	C56H73N21044P6	12.90	25/2.348/3	642 0962	-2	2.1	-2n, -3h, -4h
GGCGn	C39H50N18O29P4	13.37	1358 19415	1357 1880	-3	9.0	=H
CCUCACACGp	C84H109N32063P9	13.84	2852.39477	1425 1981	-1	5	-2H3H4H5H
ACAUCCUCGp	C84H108N31064P9	13.87	2853.37879	1425.6931	-2	7.1	-2H, -3H, -4H5H
UCACCAUCGp	C84H108N31064P9	13.87	2853.37879	1425.6931	-2	7.1	-2H, -3H, -4H, -5H
UCACCAUCGp	C84H108N31064P9	14.1	2853.37879	1425.6893	-2	4.5	-2H, -3H, -4H, -5H
AUUCUUUUGp	C83H104N25O69P9	13.93	2833.30362	1415.653	-2	5.4	-2H, -3H, -4H, -5H
ACAUCAUUGp	C85H107N32O64P9	14.19	2878.37404	1438.1666	-2	-9.7	-2H
AUUCUUAUGp	C84H105N28O67P9	14.19	2856.33083	1427.1719	-2	9.1	-2H, -3H, -4H
UGAUGAUUCUUUUGp	C131H162N44O105P14	14.19	4464.50161	1487.1526	-3	-6.6	-3H
AUACAUUUGp	C85H106N31065P9	14.43	2879.35805	1438.6866	-2	9.8	-2H, -3H, -5H
ACACCCUAGp	C85H109N34O62P9	14.44	2876.406	1437.2048	-2	5.8	-2H, -3H, -4H, -5H
AACAACUCGp	C86H109N36O61P9	14.72	2900.41724	1449.2093	-2	5	-2H, -3H, -4H, -5H
AAACAAUCGp	C87H109N38O60P9	14.96	2924.42847	1461.2135	-2	3.9	-2H, -3H, -4H, -5H
CAAACAAAGp	C88H110N41058P9	14.96	2947.45569	1472.7265	-2	3.5	-2H, -3H, -4H, -5H
AAAAACAUGp	C88H109N40O59P9	15.25	2948.4397	1473.2225	-2	6.2	-2H, -3H, -4H, -5H
CUGACCCUAUCAUCGp	C140H178N510107P15	15.25	4749.61192	1582.19	-3	-5.8	-3H
UUUCACACAGp	C94H119N35071P10	15.55	3183.41532	1590.7086	-2	4.7	-2H, -3H, -4H, -5H
	C144H178N/500102D15	15.84	3208.41057	1603.2007	-2	1.2	-2H, -3H, -4H, -5H
CUACAULAAAGe	C06H120N40O28D10	16.02	4040.65685	1614.2191	-3	3.1	-30,-00
GGCUGn	C48H61N20027P5	16.02	1664 21046	1662 209	-2	-0.8	-en, -an, -4h, -ah
uccacucuaue»	C102H130N25090D17	16.02	3465 42020	1731 7005	-1	-2.5	-11
AACAUUCUAUGo	C104H130N39078D11	17.24	3513 45186	1755 7214	-2	1.1	-2H =3H =4H -5H -4H
AUCUUAAAAUGn	C105H130N41077P11	17.45	3537,46309	1767.7284	-2	1.9	-2H, -3H, -4H, -5H
ACAUACUAUCAGo	C114H143N45083P12	18.45	3841,52036	1919.7549	-2	0.6	-2H, -3H, -4H, -5H, -6H
CUGUGGp	C57H72N22O45P6	18.45	1970.24476	1969.2473	-1	5	-H
GUGGp	C39H49N17O30P4	18.55	1359.17817	1358.1705	-1	-0.3	-H
AGGGp	C40H50N20O28P4	19.39	1382.20539	690.0948	-2	-2	-2H, -H
GAGGp_1	C40H50N20O28P4	19.39	1382.20539	690.0948	-2	-2	-2H, -H
UCAUUGAGUUCUUCAAACUGp	C188H234N68O144P20	19.39	6366.78303	2121.2642	-3	3.8	-3H
UAACUACAACCAGp	C124H156N51O88P13	19.43	4169.58887	1388.8648	-3	4.8	-3H, -2H, -4H, -5H, -6H
CAGGp	C39H50N18O28P4	22.38	1342.19924	1341.1865	-1	-4.1	-H, -2H

表 1: 精密質量マッチに基づいて、10 ppm の質量誤差範囲内で暫定的に同定およびバリデーションした、ルシフェラ

ーゼ mRNA 消化物成分。異性体配列または同重体イオンに対応するセルは、グレーで強調表示されています。

図 3 に、消化成分 UCCACUCUAUGp の同定が得られたデータ例が示されています。この成分は、左上のクロマトグラ ムに表示されているように 16.49 分に溶出し、*in silico* 消化ライブラリーで、*m/z* 576.5732([M-6H]⁶⁻)、 692.0876([M-5H]⁵⁻)、865.3603([M-4H]⁴⁻)、1154.1438([M-3H]³⁻)、1731.7095([M-2H]²⁻)の、2 ~ 6 個の負 電荷がある 5 つのイオン(図 3、左下のトレース)に基づいて同定されました。[M-5H]⁵⁻ イオンおよび [M-2H]²⁻ イオ ンの同位体分布が示され、チャージ状態の割り当てを裏付けるデータが示されています(図 3、右)。

図 3: 16.49 分に溶出する消化物成分 UCCAUCACCCUGp の同定(左上のトレース)。この成分は、*m/z 576.5732*([M-6H]⁶⁻)、692.0876([M-5H]⁵⁻)、865.3603([M-4H]⁴⁻)、1154.1438([M-3H]³⁻)、1731.7095([M-2H]²⁻)の、2 ~ 6 個の負電荷を帯びた 5 つのイオンに基づいて生成された *in silico* 消化物から、同定されました。実験的に観察された [*M-5H*]⁵⁻ イオンと [*M-2H*]²⁻ イオンの同位体分布が、右上のトレースと下のトレースにそれぞれ示されています。

異性体または同重体イオンの存在による曖昧さは、表 2 に報告されているように、waters_connect CONFIRM Sequence[™] アプリケーションを使用して MS^E スペクトルを解釈することで解決されました。位置 623 ~ 631(ACAUCCUCGp)および 551~559(UCACCAUCGp)の異性体配列は、RNase T1 の *in silico* 消化物から予測され、ど ちらも同じ保持時間 13.87 分に割り当てられています。インタクト質量分析を使用して正しい割り当てを行うことはで きません。同じ注入で得られた MS^E データを用い、waters_connect CONFIRM Sequence[™] アプリケーションを使用 してこの割り当ての正しい配列を解析しました。そこでは、各配列に対して高エネルギーフラグメントイオンを予測し 、カスタマイズされたアルゴリズムで波形解析した生データの同位体クラスターにマッチしました。確認されたフラグ メントイオンをドットマップ上に示すことで、シーケンスカバー率を速やかに評価できます(図 4、B)。 UCACCAUCGp について、シーケンス完全カバー率が得られ、正しい割り当てとして容易にバリデーションできました (表 2、インデックス番号 63)。

手動でバリデーションした消化成分(表1)について得られた中性プリカーサー質量は、973.1406 Da(CCGp、RT 2.54 分)から 6366.7830 Da(UCAUUGAGUUCUUCAAACUGp、RT 19.39 分)の 20-mer ヌクレオチドまでにわたって いました。最も早く溶出した成分は UGUGp で、実測中性質量 1320.1560、保持時間 1.64 分と特定されました。手動 でバリデーションした一連の ID の中で溶出する最後のルシフェラーゼ mRNA 消化物成分(表 1)は CAGGp(1342.1992 Da)で、22.38 分に溶出するのが観察されました。このような遅い保持時間での CAGGp の溶出は 、密接に関連する配列 UAAGp が約4分に溶出したことを考えて、予想外でした。疑陽性の問題に対処するため、 waters_connect CONFIRM Sequence アプリケーションを使用して、成分の ID をさらに特性解析しました。MS^E デー タが含まれている MS データに基づいてバリデーションしました。表 2 に示されているように、90 成分のうち CAGGp を含む 34 成分では、精密質量マッチによって配列割り当てがサポートされましたが、配列割り当てをそれ以上バリデ ーションするために十分な数の MS^E フラグメントが生成されませんでした。もう1つの興味深い別の例は、割り当て られた配列 AAAAACAUGUUGCCGp(4860.6678 Da、15-mer、プリン9個)と AUACAUUUGACAAAGp(4845.6568 Da、15-mer、プリン9個)の同じデータセット内で、同じプリン含有量で10分離れた溶出が観察されたことです。 MS^E データを使用して、AAAAACAUGUUGCCGp を疑陽性として除外し、AUACAUUUGACAAAGp の同定を確認するこ とができました。これにより、精密質量マッチとフラグメンテーションスペクトルの両方を戦略的に用いて、消化済み mRNA 配列から得られた成分を曖昧さなしに同定する補助とすることの、重要性が実証されています。さらに、得られ た結果から、消化済み mRNA 成分の保持は、最初に考えたほど予測可能ではない可能性があること、およびオリゴヌ クレオチドとクロマトグラフィー固定相の相互作用をさらに詳しく調べてモデル化することが急務であることを認識し ました。

最後に、手動でバリデーションしたマッチ済み消化物成分を mRNA 配列と比較することで、シーケンスカバー率を手動で推定しました。401の初期のマッチのシーケンスカバー率の暫定推定で、カバー率の値約 76% が得られました。 厳密にバリデーションしたマッチを mRNA 配列に対して確認したところ、得られたカバー率の値は約 22% でした。観察された消化成分の多くはルシフェラーゼ mRNA 配列の複数の位置にマッピングされ(表 2)、修飾または完全修飾された核酸配列にはわずか 4 種類の一意の残基のみが存在するため、冗長性が期待されました。

							MSe データを使用したパリデーション				
索引	11日貢重(リーモビー) したルシフェラーゼ mRNA 消化物成分	実測保持時間 (分)	解持時間 mRNA 配列 上の位置 mRNA 配列上の追加の位置			UNFIRMS	equence)				
	(ptmaxe 10 ppm)				はい / いいえ	ビーク1	ビーク2	ピーク3			
1	UGUGp_1	1.64	217-229	1553-1556	はい	50					
2	CCUUCGCCCGp	1.65	896-905	NA	いいえ	0		-			
4	CCGGUCAAAGn	1.7	1520-1529	NA	LNUZ	10					
5	GAAGp	2.1	378-381	445-448, 635-638, 712-715		25					
6	CCGn 6	2.54	59-61	246-248, 284-286, 838-840, 855-857, 1073-1075, 1076-1078, 1223-1225,		0					
-		0.54	1007 1070	1520-1522							
8	CUCGGp	2.54	25-29	NA NA	51012	0					
		2.00	23-23	422-424, 427-429, 452-454, 512-514, 560-562, 852-854, 906-908, 940-942,	0.000						
9	CUGp	2.55	177-179	965-967, 1430-1432, 1493-1495	1211	50					
10	GAGACAUCAUUGp	2.55	455-466	NA	しいえ	16.67					
11	UAUUGAUAGCAGp	2.55	165-176	NA 900 911 920 922 959 950	いいえ	0					
13	CAGD	2.73	174-176	273-275, 287-289	(21)	50					
14	Allen	2.02	200 211	291-293, 407-409, 571-573, 709-711, 806-808, 1100-1102, 1193-1195, 1271-1273,	taka a	100					
14	Лоар	2.32	205-211	1367-1369, 1415-1417, 1427-1429, 1467-1469, 1581-1583, 1688-1690	14.01	100					
15	AAGp_4	3.18	43-45	146-148, 155-157, 379-381, 446-448, 636-638, 713-715, 1105-1107, 1139-1141, 1220-1222, 1304-1306, 1433-1435, 1475-1477, 1490-1492, 1679-1681	はい	100					
16	ACACCCUAGAAGp	3.44	1670-1681	NA	いいえ	16.67					
17	UGAUCUUGp	3.9	1530-1537	NA	はい	50					
18	CCCGp	3.91	902-905	NA	いいえ	0					
19	CCUGp	3.91	1439-1442	1439-1442, 1564-1567, 1599-1602	はい	25					
20	Geucceuen	3.91	1048-1055	NA	1117	12.5					
22	AAGCCGUGp	4.17	1220-1227	NA	LILIX	12.5					
23	UAAGp_1	4.79	644-647	1371-1374	はい	50					
24	AAAGp	5.06	312-315	1147-1150, 1645-1648	はい	100					
25	CUCUGp	5.81	1307-1311	NA	はい	60					
26	UCCCGp	5.83	1232-1236	NA NA	いいえ	0					
27	AUCUGp	6.51	639-643	1445-1449	(21.)	100					
29	AUCCGp	6.53	30-34	NA	はい	20					
30	AAAAACAUGUUGCCGp	6.52	234-248	NA	いいえ	0					
31	CAAAGp	6.79	822-826	NA	はい	40					
32	CCUCUGp	7.89	687-692	NA	はい	50					
33	CUCCCGp	7.91	968-973	NA	はい	33.33					
34	ULCCCAGP	8.29	053-058	NA	(atu)	16.67					
35	AUCCAGP	8.58	/34-/39	NA	(共溜出)	33.33	33.33				
36	AUUCUGa	8.58	65-70	NA	ぼい	100					
38	AAUCAGp	8.88	1155-1160	NA	(#1.)	66.67					
39	UACAAGp	8.88	841-846	NA	はい	100					
40	AUCCAGp	8.89	734-739	NA	はい	33.33	33.33				
41	AACCUGp	9.03	110-115	332-337, 400-405, 984-989	はい	100					
42	ACACAGp	9.26	659-664	NA	UNUZ	16.67					
43	UCUUCUGD	9.89	828-834	NA	(21.)	71.43					
45	AUCUCUGp	10.23	679-685	NA	UUNZ	14.29					
46	UCUACUGp	10.23	71-77	NA	はい	57.14	28.57				
47	AUUCCAGp	10.53	318-324	NA	いいえ	14.29		_			
48	CAUACUGp	10.53	815-821	NA	はい	57.14		_			
49	AAACCIIGD	11.22	1406-1412	NA NA	120	71.43					
51	ACUACAGp	11.22	947-953	1285-1291	はい	71.43					
52	CCACAAGp	11.25	1557-1563	NA	はい	14.29					
53	UCUCUUCGp	11.69	1512-1519	NA	はい	37.5					
54	AAAACAGp	11.84	1197-1203	NA	はい	71.43					
55	CCACCALIGE	11.99	102-109	NA	はい	37.5					
57	AAAUCCUGp	12.63	798-805	NA	1.1.12	12.5					
58	ACAUACUGp	12.63	1277-1284	NA	はい	14.29	62.5	40			
59	CUGCCGp	12.64	852-857	NA	しんえ	0					
60	GGCGp	13.37	367-370	NA	いいえ	0					
61	CCUCACACGp	13.84	929-937	NA	(#1)	22.22					
62	UCACCAUCGD	13.87	551-559	NA	(21.)	33.33	33.3				
64	AUUCUUUUGp	13.93	1418-1426	NA	はい	55.56	0.0.0				
65	ACAUCAUUGp	14.19	458-466	NA	はい	22.22					
66	AUUCUUAUGp	14.19	1063-1071	NA	はい	44.44					
67	UGAUGAUUCUUUUGp	14.19	1413-1426	NA	しいいえ	7.14					
68	AUACAUUUGp	14.43	1016-1024	NA	11113	55.56					
70	AACAACUCGp	14.72	740-748	NA	はい	22.22					
71	AAACAAUCGp	14.96	1162-1170	NA	はい	55.56					
72	CAAACAAAGp	14.96	665-673	NA	はい	77.78					
73	AAAAACAUGp	15.25	234-242	NA	はい	77.78					
74	CUGACCCUAUCAUCGp	15.25	512-526	NA	いいえ	0					
75		15.55	1346 1255	NA	1213	80					
77	AUACAUUUGACAAAGp	16.02	1016-1030	NA	はい	20					
78	CUACAUAAAGp	16.02	1653-1662	NA	はい	50					
79	GGCUGp	16.02	420-424	NA	いいえ	0					
80	UCCACUCUAUGp	16.49	786-796	NA	はい	72.73					
81	AACAUUCUAUGp	17.24	300-310	NA	(#1)	63.64					
82	ACQUAAAAUGp	17.45	698-708 197-208	NA	141.1	63.64 50					
84	CUGUGGp	18.45	177-182	NA	11112	0					
85	GUGGp	18.55	506-509	914-917, 1312-1315	しいいえ	0					
86	AGGGp	19.39	1603-1606	NA	いいえ	0					
87	GAGGp_1	19.39	632-635	1214-1217	しいえ	0					
88	UCAUUGAGUUCUUCAAACUGp	19.39	593-612	NA NA	(21)	0					
89	CAGGn	22.20	287-290	NA	10101	09.23					
30	orroup	66.30	201-230			5					

表 2: 精密質量マッチ、および waters_connect CONFIRM Sequence アプリケーションと収集した MS^E スペクトルを使

用したさらなるバリデーションに基づく、ルシフェラーゼ mRNA 消化成分の同定およびバリデーション

図 4: (A) 位置 623 ~ 631 (ACAUCCUCGp) および 551 ~ 559 (UCACCAUCGp) の消化済みフラグメント成分が RNase T1 消化物から予測され、TIC の同じ RT のピークに割り当てられます。インタクト質量情報を使用して正しい割 り当てを決定することはできません。(B) 同じ注入から得られた MS^E データを使用して、この割り当ての正しい配列 を解明できます。waters_connect CONFIRM Sequence アプリケーションを用い、McLuckey の注釈ⁿを使用して各配列 に対して高エネルギーフラグメントイオンを予測し、カスタマイズされたアルゴリズムで波形解析した生データの同位 体クラスターにマッチしました。このソフトウェアにより、確認済みのフラグメントイオンがドットマップに提示され 、シーケンスカバー率がすばやく評価されます。

結論

本研究で、IP-RPLC と MS を用いた、合成 mRNA のオリゴマッピング用の頑健な分析ワークフローを確立しました。

 合成 mRNA を、わずか 10 μgの試料から出発して、RNase T1 を用いて再現可能な方法で消化し、追加のサンプル クリーンアップなしで ACQUITY Premier Peptide BEH C₁₈ (2.1 x 150 mm、300 Å、1.7 μm)カラムに注入しまし た

- ACQUITY Premier LC でイオン対逆相クロマトグラフィーを使用して、高いクロマトグラフィー分離が達成され、 これにより、消化物成分を消化が不完全な mRNA および残存する酵素から容易に分離でき、BioAccord ACQUITY RDa 検出器で効率的に検出できました
- in silico での mRNA 消化計算および waters_connect/UNIFI サイエンスライブラリーの適用によって促進される精 密質量マッチに基づいて、注釈付き mRNA 消化クロマトグラムを生成しました
- 消化済み成分に割り当てた配列は、waters_connect CONFIRM Sequence アプリケーションを用いて、MS^E スペクトルに基づいてさらにバリデーションしました。さらに、ドットマップによる視覚化を使用して、可能性のある割り当てのフラグメントイオンカバー率を速やかに確認しました

本研究の目的は、mRNA 分子のボトムアップ特性解析を容易にするために必要な、クロマトグラフィー、検出、データ 解釈のアプローチを確立することでした。RNase T1 消化は、データの収集と分析のワークフローを確立する、最初の 例および概念の証明としてのみ、適用しました。とはいえ、(1)複数のさまざまなヌクレアーゼを用いて補完性のあ る追加の配列マッピング情報を生成する、および(2)データ取り込みに多重化アプローチを採用することにより、所 定の mRNA 構造をより包括的に精査する機会は十分にあります。包括的なシーケンスカバー率の達成を目的とするこ れらの側面については、今後の研究で詳しく探査されるでしょう。

参考文献

- 1. Xu, S.; Yang, K.; Li, R.; Zhang, L., mRNA Vaccine Era—Mechanisms, Drug Platform and Clinical Prospection. International Journal of Molecular Sciences 2020, 21 (18), 6582.
- 2. Brenner, S.; Jacob, F.; Meselson, M., An Unstable Intermediate Carrying Information From Genes to Ribosomes for Protein Synthesis. *Nature* 1961, *190* (4776), 576–581.
- Weide, B.; Pascolo, S.; Scheel, B. Derhovanessian, E.; Pflugfelder, A.; Eigentler, T. K. Pawelec, G.; Hoerr, I.; Rammensee, H. G.; Garbe, C., Direct Injection of Protamine-Protected Mrna: Results of a Phase 1/2 Vaccination Trial in Metastatic Melanoma Patients. *J Immunother* 2009, *32* (5), 498–507.
- Jiang, T.; Yu, N.; Kim, J.; Murgo, J.-R.; Kissai, M.; Ravichandran, K.; Miracco, E. J.; Presnyak, V.; Hua, S., Oligonucleotide Sequence Mapping of Large Therapeutic mRNA s via Parallel Ribonuclease Digestions and LC-MS/MS.*Anal.Chem.*2019, *91* (13), 8500–8506.
- 5. Plumb, R. S.; Johnson, K. A.; Rainville, P.; Smith, B. W.; Wilson, I. D.; Castro-Perez, J. M.; Nicholson, J. K., UPLC/MS^E; A New Approach for Generating Molecular Fragment Information for Biomarker Structure

Elucidation. Rapid Communications in Mass Spectrometry 2006, 20 (13), 1989-1994.

- 6. Packer, M.; Gyawali, D.; Yerabolu, R.; Schariter, J.; White, P., A Novel Mechanism for the Loss of mRNA Activity in Lipid Nanoparticle Delivery Systems.*Nat.Commun.*2021, *12* (1), 6777.
- Goyon, A.; Scott, B.; Kurita, K.; Maschinot, C.; Meyer, K.; Yehl, P.; Zhang, K., On-line Sequencing of CRISPR Guide RNAs and Their Impurities via the Use of Immobilized Ribonuclease Cartridges Attached to a 2D/3D-LC–MS System.*Anal.Chem.*2021.
- Guo, L.; Worth, A. J.; Mesaros, C.; Snyder, N. W.; Glickson, J. D.; Blair, I. A., Diisopropylethylamine/Hexafluoroisopropanol-Mediated Ion-Pairing Ultra-High-Performance Liquid Chromatography/Mass Spectrometry for Phosphate and Carboxylate Metabolite Analysis: Utility for Studying Cellular Metabolism.*Rapid Commun Mass Spectrom* 2016, *30* (16), 1835–1845.
- Birdsall, R. E.; Gilar, M.; Shion, H.; Yu, Y. Q.; Chen, W., Reduction of Metal Adducts in Oligonucleotide Mass Spectra in Ion-Pair Reversed-Phase Chromatography/Mass Spectrometry Analysis. *Rapid Commun Mass* Spectrom 2016, 30 (14), 1667–1679.
- Fountain, K.; Gilar, M.; Budman, Y.; Gebler, J., Purification of Dye-Labeled Oligonucleotides by Ion-Pair Reversed-Phase High-Performance Liquid Chromatography. *Journal of chromatography.B, Analytical technologies in the biomedical and life sciences* 2003, 783, 61–72.
- 11. McLuckey, S. A.; Van Berkel, G. J.; Glish, G. L., Tandem Mass Spectrometry of Small, Multiply Charged Oligonucleotides. *J. Am.Soc.Mass Spectrom*. 1992, 3 (1), 60–70.

謝辞

本研究に貴重な貢献をしたウォーターズの同僚 Ana-Maria Rotaru、Emanuela Petreanu、Claudia Florea、Dave Jackson、Simon Jones に感謝致します。New England Biolabs での共同研究者である Bijoyita Roy、Siuhong Chan、Ivan R. Corrêa Jr.、Erbay Yigit、G. Brett Robb に、ルシフェラーゼ mRNA および多くの議論を提供して頂い たことについて、感謝致します。

ソリューション提供製品

ACQUITY UPLC I-Class PLUS システム <https://www.waters.com/134613317> バイオ医薬品のための BioAccord LC-MS システム <https://www.waters.com/waters/nav.htm?cid=135005818> ACQUITY UPLC チューナブル UV 検出器 <https://www.waters.com/514228> ACQUITY RDa 検出器 <https://www.waters.com/waters/nav.htm?cid=135077027> UNIFI 科学情報システム <https://www.waters.com/134801648> waters_connect <https://www.waters.com/waters/nav.htm?cid=135040165>

720007669JA、2022年6月

© 2023 Waters Corporation. All Rights Reserved. 利用規約 プライバシー 商標 サイトマップ キャリア クッキー クッキー環境設定